首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The [3 + 2] cycloaddition (32CA) reactions of three nitrile oxides (NOs) (R‐CNO; R = Ph, CO2Me, and Br) with methyl acrylate (MA) have been theoretically studied within the molecular electron density theory. Topological analysis of the electron localization function of these NOs permits to establish that they will participate in zw‐type 32CA reactions. Analysis of the conceptual DFT indices indicates that these zw‐type 32CA reactions will have a low polar character as a consequence of the relatively low electrophilic character of MA and the low nucleophilic character of NOs, in agreement with the global electron density transfer computed at the corresponding TSs. The activation enthalpies associated with these 32CA reactions range from 8.2 to 12.7 kcal·mol?1. The presence of the bromide atom provokes the larger acceleration. While the 32CA reaction involving the CO2Me substituted NO is highly ortho regioselective, the other two reactions are poorly ortho regioselective. A bonding evolution theory study of the more favorable ortho regiosiomeric channel associated with the 32CA reaction involving the Br substituted NO indicates that this reaction is associated to a nonconcerted two‐stage one‐step mechanism, in which the activation energy is mainly related to the initial rupture of the C? N triple bond of the NO.  相似文献   

2.
The mechanisms and stereoselectivities of the [2 + 4] cycloaddition reaction of methylallenoate R1 with methyleneindolonone R2 catalyzed by DABCO (Equation 1) and DMAP (Equation 2) organocatalysts have been examined with density functional theory (M06‐2X) calculations. Several possible reaction pathways (paths 1a, 1b, and 1c for Equation 1 and paths 2a and 2b for Equation 2) were located and compared. The results of our study reveal that for both reactions, three reaction stages have been characterized: nucleophilic addition of the catalyst ( DABCO or DMAP ) to R1 (Stage I ), addition of the other reactant R2 (Stage II ), intramolecular cycloaddition and liberation of the catalyst ( DABCO or DMAP ) afforded the final product (Stage III ). For the DABCO ‐catalyzed cycloaddition, we predict that path 1a leading to P(E) is the most energy favorable pathway among the three possible pathways. The carbon–carbon bond formation step is the rate‐determining step (ΔG ?=23.6 kcal/mol). With DMAP catalyst, the same reaction gave P(Z) as the major product. The barrier for the rate‐determining step (addition of R1 to DMAP ) is 25.8 kcal/mol. The calculated results are in agreement with the experimental findings. Moreover, for both reactions, the analysis of global reactivity indexes has been carried out to examine the role of catalyst. The present study should provide a general mechanistic framework for the rational design of this kind of reactions.  相似文献   

3.
《中国化学》2017,35(9):1469-1473
A phosphine‐catalyzed [4 + 2] annulation of α ‐substituted allenoate with exocyclic alkene moiety of oxindoles or indan‐1,3‐diones has been developed. Thus, under the catalysis of PPh3 (20 mol%), a series of spirooxindole‐ or spiroindan‐1,3‐dione‐cyclohexenes have been obtained in moderate to excellent yields and regioselectivity from the annulations of α ‐methyl allenoates with 3‐methyleneoxindoles or 2‐methyleneindan‐1,3‐diones. This method offers an easy access to structurally novel spirocyclohexenes.  相似文献   

4.
A computational study on the detailed mechanism and stereoselectivity of the chiral phosphine‐catalyzed C(sp2)? H activation/[3 + 3] annulation between Morita–Baylis–Hillman (MBH) carbonates and C,N‐cyclic azomethine imines has been performed. Generally, the catalytic cycle consists of two stages, that is, C(sp2)? H activation companied by the dissociation of the t‐BuO group forming phosphonium enolate, and [3 + 3] cycloaddition process followed by regeneration of the catalyst. The calculated results indicate that C(sp2)? H activation is rate‐determining while [3 + 3] cycloaddition is stereoselectivity‐determining. Furthermore, the advantageous hydrogen bond interactions and less steric hindrance in the RR configurational C? C bond forming transition states should be responsible for the favorability of RR‐configured product among the four possible products. The special role of the organocatalyst was also identified by natural bond orbital (NBO) and global reactivity index (GRI) analyses. The mechanistic insights obtained in the present study should be useful for understanding the novel organocatalytic C(sp2)? H activation and cycloaddition cascade reaction of MBH carbonates, and thus provide valuable clues on rational design of efficient organocatalysts for the C(sp2)? H activation/functionalizations.  相似文献   

5.
The kinetic model of the co‐polycondensation with A2 and AB2 type monomers is developed and the analytical expressions of the various molecular parameters of the products are derived rigorously. The monomer feed ratio (α) of A2 to AB2 significantly affects the molecular parameters and the critical condition of gelation. Gelation can be avoided if α is > . At the critical state, the degree of branching decreases firstly and reaches its minimum value at about α≈0.22. Then, it increases with increasing α‐value. In comparison with experimental results, non‐equal reactivity of the active groups should be considered.

  相似文献   


6.
The kinetics of hyperbranched A2 + B3 systems is discussed theoretically with respect to the development of the 7 different structural units, the degree of branching, DB, and the monomer sequences considering the adjacent groups of a structural unit. For A2 + B3 systems, the comonomer ratio, the relative rate constants and the process conditions have an influence on the resulting structure as shown by numerical simulations. With increasing A:B ratios fA/B, the degree of branching will be increased. Also the relative reaction rate constants have a strong impact on the distribution of structural units, especially when the reaction rate constants for the pathway of the B3 monomer are changed. On the other hand, differences in the reaction rate constants for the pathway of the A2 monomer do not have any influence on the degree of branching. The simulation indicates that slow addition of either both monomers or just the B3 monomer has the strongest effect on the resulting DB. In all cases, the conversion is a critical issue to obtain high molecular weight products.

Degree of branching (DB) versus conversion of A‐functionalities (pA) for various monomer compositions.  相似文献   


7.
A new global potential energy surface for the ground state of MgH2 was constructed using the permutation invariant polynomial neural network method. About 70 000 ab initio energy points were calculated via the multi‐reference configuration interaction method method with aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets, and these points were used to construct the potential energy surface (PES). To avoid basis set superposition error, the basis set was extrapolated to the complete basis set limit using the two point energy extrapolation formula. The root mean square error of the present PES is only 8.85 meV. Initial state (v = 0, j = 0) dynamics studies were performed using the time‐dependent wave packet method with a second‐order split operator for the total angular momentum J up to a value of 50. Furthermore, the reaction probability, integral cross section, and thermal rate constant are reported and compared with available theoretical studies.  相似文献   

8.
We present a detailed quasiclassical trajectory (QCT) study of the dynamics corresponding to the reaction H + LiH proceeding via depletion and H‐exchange paths on a new potential energy surface of the electronic ground state. The effects of collision energy and reagent initial vibrational excitation on the reaction probability and cross sections are studied over a wide range of collision energies. The QCT‐calculated reaction probability and cross sections are in good agreement with previous time‐dependent wave packet results. More importantly, we found that the vibrational excitation of LiH molecule inhibits the LiH depletion reaction, whereas it promotes the H‐exchange reaction. In addition, the differential cross sections calculated for the depletion reaction at different collision energies and excitation states indicate a strong forward scattering of the product molecule H2. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Are the ‘Textbook Anions’ O2?, [CO3]2?, and [SO4]2? Fictitious? Experimental second electron affinities are still unknown for the title anions. It will be shown by means of quantum chemical ab initio calculations that these dianions are unstable with respect to spontaneous ionization. They all must be designated as non-existent.  相似文献   

10.
Summary: We developed a facile approach to hyperbranched polymers by applying a superelectrophilic reaction within an A2 + B3 strategy. A significant reactivity difference between the intermediate and the starting material was utilized to avoid gelation in the A2 + B3 polymerization. A number of hyperbranched poly(arylene oxindole)s were achieved in a one‐step polymerization and characterized by NMR spectroscopy and gel permeation chromatography. Moreover, further modifications at the interior and exterior of the resulting polymers were explored as well.

Structure of the hyperbranched polymers produced using the A2 + B3 approach.  相似文献   


11.
[2+2]环加成反应是对C60进行化学修饰的重要反应之一, 重点从[2+2]环加成的典型反应、主要试剂及反应机理等方面进行了综述.  相似文献   

12.
Different derivatives of a novel heterocyclic system, i.e., pyrimido[4,5‐d] [1,2,4]triazolo[4,3‐a]pyrimidine, are synthesized in moderate‐to‐good yields. These compounds exhibit excellent photochromism upon photoirradiation. The photophysical characterizations of these new compounds were evaluated by UV/VIS absorption and fluorescence emission studies. The emission spectra in various solvents are also presented and discussed. The changes are due to the intramolecular H‐bonding of pyrimido‐triazolo‐pyrimidine with H2O, and photoinduced electron and general solvent effect. These compounds display high fluorescence quantum yields and are reported as new fluorophores.  相似文献   

13.
Polypropylene + low density polyethylene (PP + LDPE) blends involving 0, 25, 50, 75 and 100 wt% of PP with dialkyl peroxide (DAP) were prepared by melt blending in a single‐screw extruder. The effects of adding dialkyl peroxide on mechanical and thermal properties of PP + LDPE blends have been studied. It was found that at lower concentrations of peroxide (e.g., 0–0.08 wt% of dialkyl peroxide) LDPE component is cross‐linked and Polypropylene (PP) is degraded in all compositions of PP + LDPE blends. Mechanical properties (Tensile strength at break, at yield and elongation at break), Melt flow index (MFI), hardness, Scanning Electron Microscope (SEM) and thermal analyses (DSC) of these blends were examined. Because of serious degradation or cross‐linking the mechanical properties and the crystallinty (%) of those products were decreased as a result of increasing peroxide content. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
We performed ab initio molecular dynamics simulations to investigate initial decomposition mechanisms and subsequent chemical processes of β‐HMX (cyclotetramethylene tetranitramine) (octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine) crystals at high temperature coupled with high pressures. It was found that the initial decomposition step is the simultaneous C–H and N–NO2 bond cleavage at 3,500 K. When the pressure (1–10 GPa) is applied, the first reaction steps are primarily the C–N and C–H bond fission at 3,500 K. The C–H bond cleavage is a triggering decomposition step of the HMX crystals at 3,500 K coupled with 16 GPa. This indicates that the C–H bonds are much easier to be broken and the hydrogen radicals are much more active. The applied pressures (1–10 GPa) accelerate the decompositions of HMX at 3,500 K. The decomposition pathways and time evolution of the main chemical species demonstrate that the temperature is the foremost factor that affects the decomposition at high pressures (1–10 GPa). However, the decomposition of HMX is dependent on both the temperature (3,500 K) and the pressure (16 GPa). This work will enrich the knowledge of the decompositions of condensed energetic materials under extreme conditions.  相似文献   

15.
Fang Tang  Li Tang  Zhi Guan  Yan-Hong He 《Tetrahedron》2018,74(46):6694-6703
The intermolecular [2 + 2] photocycloaddition of chalcones with 2,3-dimethyl-1,3-butadiene under visible-light irradiation for the synthesis of cyclobutane derivatives has been developed. Without using any photosensitizer, metallic catalyst and solvent, the reaction proceeded with high regioselectivity and moderate to high stereoselectivity. Mild reaction conditions and no additives make the reaction easy to operate. Control experiments and density functional theory (DFT) computations demonstrated that the reaction takes place via visible-light activation of chalcones, which is different from the previously reported [2 + 2] cycloaddition of chalcones.  相似文献   

16.
《中国化学》2018,36(5):421-429
Reported herein is an example of highly regio‐, diastereo‐ and enantioselective Cu(I)‐catalyzed intermolecular [3+2] cycloaddition reaction of α‐substituted iminoesters with α‐trifluoromethyl α,β‐unsaturated esters. This novel strategy provided a facile access to pyrrolidines with two skipped (aza)quaternary stereocenters including a CF3 all‐carbon quaternary stereocenter. A broad substrate scope was observed and high yields (up to 94%) with excellent diastereoselectivity (up to >20 : 1 d.r.) and enantioselectivity (up to 98% ee) were obtained.  相似文献   

17.
Diastereo‐ and enantioselective cycloaddition of 3‐nitroindoles with vinyl aziridine was realized under Pd‐catalysis using commercially available Walphos as the ligand, affording pyrroloindolines in high yields with high diastereo‐ and enantioselectivities. The reaction can be scaled up to a gram scale and the reaction products are easily converted to amino pyrroloindoline and other pyrroloindoline derivatives.  相似文献   

18.
胡萍  龙玉华  王辉  莫海洪  杨定乔 《有机化学》2008,28(7):1181-1192
综述了近年来钌催化二环烯烃与炔烃发生[2+2]环加成反应的研究进展, 重点讨论了钌催化二环烯烃和炔烃的 [2+2]环加成反应中反应物结构、反应物比例、溶剂及温度等因素对反应的影响.  相似文献   

19.
Phosphine‐stabilized germaborenes featuring an unprecedented Ge=B double bond with short B???Ge contacts of 1.886(2) ( 4 ) and 1.895(3) Å ( 5 ) were synthesized starting from an intramolecular germylene–phosphine Lewis pair ( 1 ). After oxidative addition of boron trihalides BX3 (X=Cl, Br), the addition products were reduced with magnesium and catalytic amounts of anthracene to give the borylene derivatives in yields of 78 % ( 4 ) and 57 % ( 5 ). These halide‐substituted germaborenes were characterized by single‐crystal structure analysis, and the electronic structures were studied by quantum‐chemical calculations. According to an NBO NRT analysis, the dominating Lewis structure contains a Ge=B double bond. The germaborenes undergo a reversible, photochemically initiated [2+2] cycloaddition with the phenyl moiety of a terphenyl substituent at room temperature, forming a complex heterocyclic structure with GeIV in a strongly distorted coordination environment.  相似文献   

20.
The time‐dependent wavepacket method is used to study the reaction dynamics of S(3P) + HD (v = 0, 1, 2) on the adiabatic 13A″ potential energy surface constructed by Han and coworkers [J. Chem. Phys. 2012, 136, 094308]. The reaction probabilities and integral cross sections as a function of collision energy are obtained and discussed. The results calculated by using the CC and the CS approximation have been compared, which suggests that for this direct abstraction reaction, the cheaper CS approximation calculation is valid enough in the quantum calculation. The investigation also shows that the reaction probabilities and integral cross sections tend to increase with collision energy. By analyzing the v‐dependent behavior of the integral cross sections, the significant effect of the vibrational excitation of HD is found. Also found in the calculation is a significant resonance feature in the reaction probabilities versus collision energy. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号