首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Block copolymers containing polystyrene and polycyclooctene were synthesized with a ring‐opening metathesis polymerization/chain‐transfer approach. Polystyrene, containing appropriately placed olefins, was prepared by anionic polymerization and served as a macromolecular chain‐transfer agent for the ring‐opening metathesis polymerization of cyclooctene. These unsaturated polymers were subsequently converted to the corresponding saturated triblock copolymers with a simple heterogeneous catalytic hydrogenation step. The molecular and morphological characterization of the block copolymers was consistent with the absence of significant branching in the central polycyclooctene and polyethylene blocks [high melting temperatures (114–127 °C) and levels of crystallinity (17–42%)]. A dramatic improvement in both the long‐range order and the mechanical properties of a microphase‐separated, symmetric polystyrene–polycyclooctene–polystyrene block copolymer sample was observed after fractionation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 361–373, 2007  相似文献   

2.
The synthesis of ABA triblock copolymers is described, in which the A blocks are poly(benzyl ether) dendrons and the B block is polycyclooctene or polyethylene. Bis‐dendritic cis‐olefins were synthesized and used as chain transfer agents in ring‐opening metathesis polymerization of cyclooctene in a process that inserts the dendrons at the polymer chain‐ends. Evaluation of the polymer products by spectroscopic, chromatographic, and titration methods supports their triblock structure. Hydrogenation of the unsaturated polycyclooctene B‐block of these ABA triblock copolymers provides the first reported synthesis of bisdendritic polyethylene. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5429–5439, 2005  相似文献   

3.
Amphiphilic block copolymers can be conveniently prepared via convergent syntheses, allowing each individual polymer block to be prepared via the polymerization technique that gives the best architectural control. The convergent “click‐chemistry” route presented here, gives access to amphiphilic diblock copolymers prepared from a ring opening metathesis polymer and polyethylene glycol. Because of the high functional group tolerance of ruthenium carbene initiators, highly functional ring opening metathesis polymerization (ROMP) polymer blocks can be prepared. The described synthetic route allows the conjugation of these polymer blocks with other end‐functional polymers to give well‐defined and highly functional amphiphilic diblock copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2913–2921, 2008  相似文献   

4.
Well‐defined azobenzene‐containing side‐chain liquid crystalline diblock copolymers composed of poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl methacrylate] (PMMAZO) and poly(γ‐benzyl‐L ‐glutamate) (PBLG) were synthesized by click reaction from alkyne‐ and azide‐functionalized homopolymers. The alkyne‐terminated PMMAZO homopolymers were synthesized by copper‐mediated atom transfer radical polymerization with a bromine‐containing alkyne bifunctional initiator, and the azido‐terminated PBLG homopolymers were synthesized by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride in DMF at room temperature using an amine‐containing azide initiator. The thermotropic phase behavior of PMMAZO‐b‐PBLG diblock copolymers in bulk were investigated using differential scanning calorimetry and polarized light microscopy. The PMMAZO‐b‐PBLG diblock copolymers exhibited a smectic phase and a nematic phase when the weight fraction of PMMAZO block was more than 50%. Photoisomerization behavior of PMMAZO‐b‐PBLG diblock copolymers and the corresponding PMMAZO homopolymers in solid film and in solution were investigated using UV–vis. In solution, trans–cis isomerization of diblock copolymers was slower than that of the corresponding PMMAZO homopolymers. These results may provide guidelines for the design of effective photoresponsive anisotropic materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

6.
This contribution presents a strategy for preparing amphiphilic homopolymers as building blocks for self‐assembly into supramolecular nanostructures. The synthesis begins with norbornene monomers containing oligoethylene glycols on the side chains. Ring‐opening metathesis polymerization of the monomers and subsequent dihydroxylation afford water‐soluble dihydroxylated poly(norbornene)s (PNBs). Amphiphilic modifications of the hydrophilic PNBs can be achieved by reacting 1,2‐diols on the backbones with hydrophobic dodecanals to form acetal linkages. The self‐assembly of the resulting amphiphilic PNB homopolymers affords polymeric micelles whose morphologies can be tuned by breaking the acetal linkages under acidic conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3804–3808  相似文献   

7.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

8.
A range of well‐defined block copolymers were synthesized using 4‐cyano‐4‐(dodecylsulfanylthiocarbonyl)sulfanylpentanol (CDP) as a dual initiator for reversible addition‐fragmentation chain transfer (RAFT) polymerization and ring‐opening polymerization (ROP) in a one‐step process. Styrene, (meth)acrylate, and acrylamide monomers were polymerized in a controlled manner for one block composed of vinyl monomers, and δ‐valerolactone (VL), ε‐caprolactone (CL), trimethylene carbonate (TMC), and L ‐lactide (LA) were used for the other block composed of cyclic monomers. Diphenyl phosphate was used as a catalyst for the ROP of VL, CL, and TMC, and 4‐dimethyamino pyridine for the ROP of LA. These catalysts did not interfere with RAFT polymerization and the synthesis of various block copolymers proceeded in a controlled manner. CDP was found to be a very useful dual initiator for a one‐step synthesis of various block copolymers by a combination of RAFT polymerization and ROP. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
Novel elastomeric A‐B‐A triblock copolymers were successfully synthesized in a new two‐step process: controlled ring‐opening polymerization of the cyclic ether–ester 1,5‐dioxepan‐2‐one as the amorphous middle block (B‐block) followed by addition and polymerization of the two semicrystalline L ‐lactide blocks (A‐block). A 1,1,6,6‐tetra‐n‐butyl‐1,6‐distanna‐2,5,7,10‐tetraoxacyclodecane initiator system was utilized and the reaction was performed in chloroform at 60 °C. A good control of the synthesis was obtained, resulting in well defined triblock copolymers. The molecular weight and chemical composition were easily adjusted by the monomer‐to‐initiator ratio. The triblock copolymers formed exhibited semicrystallinity up to a content of 1,5‐dioxepan‐2‐one as high as 89% as determined by differential scanning calorimetry. WAXS investigation of the triblock copolymers showed a crystal structure similar to that of the pure poly(L ‐lactide). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1774–1784, 2000  相似文献   

10.
A new class of liquid‐crystalline (LC) homopolymers of poly{11‐[4‐(3‐ethoxycarbonyl‐coumarin‐7‐oxy)‐carbonylphenyloxy]‐undecyl methacrylate} containing a coumarin moiety as a photocrosslinkable unit with various polymerization degrees and their LC‐coil diblock and LC‐coil‐LC triblock copolymers with polystyrene as the coil segment was synthesized with the atom transfer radical polymerization method. All the homopolymers and block copolymers synthesized here exhibited narrow polydispersities, indicating well‐controlled living polymerization. Differential scanning calorimetry, polarized optical microscopy, and wide‐angle X‐ray diffraction confirmed that all the homopolymers and block copolymers exhibit a monolayer smectic A phase. Coumarin moieties in the polymers can be photodimerized under λ > 300 nm light irradiation to yield crosslinked network structures, which improve the thermal stability of a polymer nanostructure because of microphase separation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2197–2206, 2003  相似文献   

11.
A novel polymeric hollow nanostructure was generated using micellar template method through a three‐step procedure. First, the block copolymers were synthesized via ring‐opening metathesis polymerization by sequentially adding monomers 7‐oxanorborn‐5‐ene‐exoexo‐2,3‐dicarboxylic acid dimethyl ester and the mixture of norbornene and 2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene in chloroform, and also atom transfer radical polymerization of 4‐(3‐butenyl)styrene was carried out by using the as‐obtained block copolymer poly(7‐oxanorborn‐5‐ene‐exo,exo‐2,3‐dicarboxylic acid dimethylester)‐block‐poly(norbornene‐co‐2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene as macroinitiator to afford a graft copolymer bearing poly(4‐(3‐butenyl)styrene) branch poly(7‐oxanorborn‐5‐ene‐exo,exo‐2,3‐dicarboxylic acid dimethylester)‐block‐poly(norbornene‐co‐2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene)‐graft‐poly(4‐(3‐butenyl)styrene). Second, the shell‐crosslinked micelles were prepared by ruthenium‐mediated ring‐closing metathesis of poly(4‐(3‐butenyl)styrene) branches in intramicelle formed from the copolymers self‐assembly spontaneously in toluene. Finally, the hollowed spherical nanoparticles were presented by removing the micellar copolymer backbone through the cleavage of the ester bonds away from the crosslinked network of branches. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Base‐stable amphiphilic diblock copolymers with a polydiallyl dimethyl ammonium hydroxide block were synthesized and characterized to quantify hydroxide‐ion transport in the hydrated state; polystyrene was the hydrophobic block. The challenge of synthesizing a copolymer comprising blocks with very different solubility behaviors was addressed by a combination of reversible addition fragmentation chain transfer polymerization and ion metathesis. Both monomers used in the polymerization are commercially available on industrial scales. Hydroxide‐ion conductivities of 0.8 mS/cm were achieved in hot‐pressed membranes immersed in water at room temperature despite relatively low water uptake (4.2 water molecules per hydroxide ion). The stability of the polydimethyl ammonium hydroxide chains was investigated in 2 M NaOD at 60 °C. 1H NMR spectroscopy studies showed no detectable degradation after 2000 hours. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2243–2248  相似文献   

13.
Fully conjugated block copolymers containing 1,4‐ and 1,3‐phenylenevinylene repeating units can be prepared by the sequential ring opening metathesis polymerization of strained cyclophanedienes, initiated by ruthenium carbene complexes (Grubbs metathesis catalysts). The molecular weight of the constituent blocks can be tightly controlled by changing the catalyst to monomer ratio and the volume fraction of the block copolymers independently tailored by the ratio of the monomers employed. Extensive phase separation between the constituent blocks is observed in thin films of these polymers by atomic force microscopy and efficient energy transfer between blocks containing 1,4‐ and 1,3‐phenylenevinylene units can be seen in the photoluminescence of these materials.

  相似文献   


14.
This article describes the synthesis of piperazine‐containing homopolymer systems via ring‐opening metathesis polymerization (ROMP). These systems were subsequently used as electron donors in the formation of charge‐transfer (CT) complexes. Using exo‐N‐(6‐bromohexyl)‐7‐oxabicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxamide as a starting material, monomers were synthesized to act as electron donors. The amine group at the “open” end of the piperazine was either left open or alkylated with various alkyl groups. The monomers' ability to act as electron donors and their polymerization rates were studied. After initial photometric titration studies using 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) as an electron acceptor proved that these monomers would act as electron donors, they were subsequently polymerized into homopolymers via ROMP. The experimental results showed that a methanol:chloroform mixed solvent system enhanced the rate of polymerization over a single solvent (chloroform) system. Studies also showed that the alkylated piperazine‐containing monomer had a faster rate of polymerization than the secondary piperazine monomer. These monomers were used to make piperazine‐containing homopolymers via ROMP and the resulting polymers, like the monomers, also functioned as electron donors. Potential functions of these polymers include electronics, solar cells, optical systems, and biological applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5034–5043, 2009  相似文献   

15.
Composite latex particles based on homopolymers and graft‐copolymers composed of polynorbornene (PNB) and poly(tert‐butyl acrylate) (PtBA) were synthesized in microemulsion conditions by simultaneous combination of two distinct methods of polymerization: Ring‐opening metathesis polymerization (ROMP) and atom transfer radical polymerization (ATRP). Only one commercial compound (first generation Grubbs catalyst) was used to initiate the ROMP of norbornene (NB) and activate the ATRP of tert‐butyl acrylate (tBA). Well‐defined nanoparticles with hydrodynamic diameters smaller than 50 nm were prepared with original morphologies depending on the monomer compositions, the type of combination (polymer blend or graft‐copolymer), and the conditions of microemulsion polymerizations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Amphiphilic block copolymers composed of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic poly(glycidyl methacrylate) (PGMA) block were synthesized through cationic ring‐opening polymerization with PEG as the precursor. The model reactions indicated that the reactivity of the epoxy groups was higher than that of the double bonds in the bifunctional monomer glycidyl methacrylate (GMA) under the cationic polymerization conditions. Through the control of the reaction time in the synthesis of block copolymer PEG‐b‐PGMA, a linear GMA block was obtained through the ring‐opening polymerization of epoxy groups, whereas the double bond in GMA remained unreacted. The results showed that the molecular weight of the PEG precursor had little influence on the grafting of GMA, and the PGMA blocks almost kept the same length, despite the difference of the PEG blocks. In addition, the PGMA blocks only consisted of several GMA units. The obtained amphiphilic PEG‐b‐PGMA block copolymers could form polymeric core–shell micelles by direct molecular self‐assembly in water. The crosslinking of the PGMA core of the PEG‐b‐PGMA micelles, induced by ultraviolet radiation and heat instead of crosslinking agents, greatly increased the stability of the micelles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2038–2047, 2005  相似文献   

17.
The synthesis and characterization of a photocleavable block copolymer containing an ortho‐nitrobenzyl (ONB) linker between poly(methyl methacrylate) and poly(d ‐lactide) blocks is presented here. The block copolymers were synthesized via atom transfer radical polymerization (ATRP) of MMA followed by ring‐opening polymerization (ROP) of d ‐Lactide and ROP of d ‐lactide followed by ATRP of MMA from a difunctional photoresponsive ONB initiator, respectively. The challenges and limitations during synthesis of the photocleavable block copolymers using the difunctional photoresponsive ONB initiator are discussed. The photocleavage of the copolymers occurs under mild conditions by simple irradiation with 302 nm wavelength UV light (Relative intensity at 7.6 cm: 1500 μW/cm2) for several hours. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4309–4316  相似文献   

18.
We report here a novel direct method for the syntheses of primary aminoalkyl methacrylamides that requires mild reagents and no protecting group chemistry. The reversible addition‐fragmentation chain transfer polymerization (RAFT) of the aminoalkyl methacrylamide revealed to be highly efficient with 4‐cyanopentanoic acid dithiobenzoate (CTP) as chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as initiator. Cationic amino‐based homopolymers of reasonably narrow polydispersities (Mw/Mn < 1.30) and predetermined molecular weights were obtained without recourse to any protecting group chemistry. A range of block and random copolymers were also synthesized via the RAFT process. The homopolymers and copolymers were characterized by aqueous conventional and triple detection gel permeation chromatography systems. Furthermore, the primary amine‐based methacrylamide monomers and polymers revealed to be highly stable both with the primary amino group in the protonated and deprotonated form. We have also demonstrated that stabilized gold nanoparticles can be generated with the RAFT‐synthesized amine‐based polymers via a photochemical process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4984–4996, 2008  相似文献   

19.
Poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene) and poly(3‐hexylthiophene)‐b‐poly(3‐undecenylthiophene) diblock copolymers have been synthesized by McCullough method. X‐ray diffraction analysis of the diblock copolymers displayed all the reflection peaks specific to regioregular poly(3‐hexylthiophene), indicating that the presence of poly(3‐alkenylthiophene) block does not affect the packing of the polymer in the solid state. The synthesized diblock copolymers were subjected to hydroboration/oxidation and hydrosilation to demonstrate the reactivity of the alkenyl substituents. Furthermore, poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene) was used as a chain transfer agent for the ruthenium‐catalyzed ring‐opening metathesis polymerization of cyclooctene to generate a polycyclooctene graft copolymer, which was hydrogenated to give poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene‐g‐polyethylene). The opto‐electronic properties and the morphology of the synthesized polymers have been investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Diblock copolymers, in which both blocks are composed of aliphatic polyesters, were synthesized from two different alkyne‐functionalized δ‐valerolactone monomers by ring opening polymerization and subsequent click cycloaddition. Trimethylsilyl protection of the alkyne functionality of one block was instrumental to the success of the synthesis. These novel aliphatic polyester diblock copolymers were characterized by 1H and 13C NMR spectroscopy, gel permeation chromatography (GPC), and infrared (IR) spectroscopy. Sequential functionalization of the diblock copolymers with hydrophobic groups on one block, and hydrophilic groups on the other block, provides access to amphiphilic structures. Micellar structures generated from these polyester amphiphiles were characterized by fluorescence spectroscopy and transition electron microscopy (TEM). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号