首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《先进技术聚合物》2018,29(1):84-94
In the present study, novel biodegradable nanocomposite membranes were prepared by adding the amino functionalized multiwalled carbon nanotube (NH2‐MWCNT) to the chitosan/polyvinyl alcohol blend polymers, and the obtained membranes were used for dehydration of isopropyl alcohol through pervaporation process. For this purpose, the membranes were prepared with chitosan/polyvinyl alcohol ratio of 4:1 on the basis of “solution casting” method and then crosslinked using glutaraldehyde, after addition of different amounts of NH2‐MWCNT. The prepared membranes were characterized using scanning electron microscopy, contact angle, mechanical strength, degree of swelling (DS), and biodegradability. Also, the ability of the prepared membranes in dehydration of isopropyl alcohol was determined using pervaporation experiments. Results indicated that contact angle, mechanical resistance, separation factor (α), and pervaporation separation index were increased with the addition of NH2‐MWCNT up to 10 wt% (relative to the total amount of polymer) and then decreased in the higher presence of nanotubes (15 wt%). Furthermore, the DS and permeate flux were first decreased and then increased for the same mentioned amounts of additive. In this study, optimized membrane was obtained by the addition of 10 wt% NH2‐MWCNT. This membrane showed the maximum α (99.5), pervaporation separation index parameter (78.29 kg m−2 h−1), biodegradability, and mechanical stability as well as minimum DS.  相似文献   

2.
Chitosan–poly(vinyl alcohol), CS–PVA, blended membranes were prepared by solution casting of varying proportions of CS and PVA. The blend membranes were then crosslinked interfacially with trimesoyl chloride (TMC)/hexane. The physiochemical properties of the blend membranes were determined using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile test and contact angle measurements. Results from ATR-FTIR show that TMC has crosslinked the blend membranes successfully, and results of XRD and DSC show a corresponding decrease in crystallinity and increase in melting point, respectively. The crosslinked CS–PVA blend membranes also show improved mechanical strength but lower flexibility in tensile testing as compared to uncrosslinked membranes. Contact angle results show that crosslinking has decreased the surface hydrophilicity of the blend membranes. The blend membrane properties, including contact angle, melting point and tensile strength, change with a variation in the blending ratio. They appear to reach a maximum when the CS content is at 75 wt%. In general, the crosslinked blend membranes show excellent stability during the pervaporation (PV) dehydration of ethylene glycol–water mixtures (10–90 wt% EG) at different temperatures (25–70 °C). At 70 °C, for 90 wt% EG in the feed mixture, the crosslinked blend membrane with 75 wt% CS shows the highest total flux of 0.46 kg/(m2 h) and best selectivity of 986. The blending ratio of 75 wt% CS is recommended as the optimized ratio in the preparation of CS–PVA blend membranes for pervaporation dehydration of ethylene glycol.  相似文献   

3.
Poly(vinyl alcohol) (PVA) was blended with soluble polyelectrolyte complex (PEC) made from poly(diallyldimethylammonium chloride) (PDDA) and sodium carboxymethyl cellulose (CMCNa). Crystallinity, thermal transition, and thermal stability of the PVA/PEC blends were characterized by using wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermal gravity analysis (TGA), respectively. Surface morphology, cross-section and phase structure of the blend membranes were examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Surface hydrophilicity and swelling behavior of the blend membranes were examined by water contact angle (CA) and swelling tests. Blend membranes were subjected to isopropanol dehydration, and effects of blend composition, feed composition and feed temperature on pervaporation performance are discussed in terms of phase structures of blend membranes. A performance of J = 1.35 kg/m2 h, α = 1002, was obtained for blend membrane containing 50 wt% PEC in dehydrating 10 wt% water–isopropanol at 70 °C.  相似文献   

4.
Three kinds of amphiphilic polymers, including the tri-block copolymer of (polyethylene oxide)–(polypropylene oxide)–(polyethylene oxide) (I, EPTBP), the comb-like copolymer of polysiloxane with polyethylene oxide and polypropylene oxide side chains (II, ACPS) and the hyperbranched star copolymer of polyester-g-methoxyl polyethylene glycol (III, HPE-g-MPEG), were blended with PVDF to fabricate porous membranes via a phase inversion process, respectively, and the effects of the different structures of the amphiphilic polymers on the properties of the blend membranes were compared. The membranes were characterized by scanning electron microscopy (SEM), elemental analysis, X-ray photoelectron spectroscopy (XPS) analysis, mercury porosimetry, water contact angle measurements, etc. The anti-fouling properties of the prepared membranes were evaluated by static and dynamic bovine serum albumin (BSA) adsorptions. Specially, the stabilities of these amphiphilic polymers in the final membranes were estimated by continuous leaching tests. At the same time, the properties of the membranes using the amphiphilic polymers as modifiers were compared with those of the membrane using poly(ethylene glycol) (PEG) as modifier.  相似文献   

5.
The differential scanning calorimetry (DSC) and the freeze-fracture electron microscopy of dipalmitoyl phosphatidylcholine (DPPC) liposomes containing distearoyl-N-monomethoxy poly(ethylene glycol)-succinyl-phosphatidylethanolamines (PEG-DSPE) were carried out. The DSC peak of DPPC liposomes containing PEG-DSPE had a shoulder. The main phase transition temperature of DPPC bilayer membranes containing PEG-DSPE whose molecular weight of PEG is less than 3000 was slightly shifted to a higher temperature, while that containing PEG-DSPE whose molecular weight of PEG is more than 5000 was slightly shifted to a lower temperature. The electron micrographs of freeze-fracture replicas of DPPC liposomes containing PEG-DSPE quenched from 37±2°C exhibited banded and planar textures, suggesting the lateral phase separation in the bilayer membranes.  相似文献   

6.
Sulfonated cardo polyetherketone (SPEK-C) and poly(vinyl alcohol) (PVA) blend membranes were prepared by solution casting method and used in pervaporation (PV) dehydration of acetic acid. The membranes were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and contact angle meter. The results show that thermal crosslinking occurred to the membrane under high temperature annealing. The effective d-spacing (inter-segmental spacing) decreased with PVA content decreasing. The hydrophilicity of the blend membrane increased with SPEK-C content increasing. Swelling and sorption experiments show that the swelling degree of the blend membrane increased, however both the sorption and diffusion selectivities decreased with increasing PVA content. The diffusion selectivity is higher than the sorption selectivity. This suggests that PV dehydration of acetic acid is dominated by the diffusion process. The pervaporation separation index (PSI) of the membrane increases with increasing PVA content and arrives at a maximum when the SPEK-C/PVA ratio is 3/2, then decreases with further addition of PVA. The membrane has an encouraging separation performance with a flux of 492 g m−2 h−1 and separation factor of 59.3 at 50 °C at the feed water content 10 wt%.  相似文献   

7.
朱宝库 《高分子科学》2010,28(3):337-346
<正>High density polyethylene(HDPE)/polyethylene-block-poly(ethylene glycol)(PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation(TIPS) process using diphenyl ether(DPE) as diluent.The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry(DSC).By varying the content of PE-b-PEG,the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy(SEM) and wide angle X-ray diffraction(WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis,Fourier transform infrared spectroscopy-attenuated total reflection(FTIR-ATR) and X-ray photoelectron spectroscopy(XPS).Water contact angle,static protein adsorption and water flux experiments were used to evaluate the hydrophilicity,antifouling and water permeation properties of the membranes.It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes.In the investigated range of PE-b-PEG content,the PEG blocks could not aggregate into obviously separated domains in membrane matrix.More importantly,PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation,but also enrich at the membrane surface layer.Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity,protein absorption resistance and water permeation properties,which would be substantially beneficial to HDPE membranes for water treatment application.  相似文献   

8.
For the purpose of separating aqueous alcohol mixtures by the use of the pervaporation and vapor permeation techniques, a surface resintering expanded poly(tetrafluoroethylene) (e-PTFE), membrane was investigated. The surface properties of the modified e-PTFE membranes were characterized by atomic force microscopy, scanning electron microscopy, and contact angle meter. The X-ray diffraction measurements show that the crystallinity of the e-PTFE membrane decreases with increasing the surface resintering temperature. The surface roughness decreases with the surface resintering temperature increases. The membrane exhibited water selectivity during all process runs. The effects of feed composition, surface resintering temperature, and molar volume of the alcohols on pervaporation and vapor permeation were investigated. Compared with the e-PTFE membrane without surface modified, the e-PTFE membrane with surface resintering treatment effectively improve the separation factor for pervaporation of aqueous alcohol mixtures. The separation performances of e-PTFE membranes in vapor permeation are higher than that in pervaporation.  相似文献   

9.
In this study a series of chemically crosslinked chitosan/poly(ethylene glycol) (CS/PEG) composite membranes were prepared with PEG as a crosslinking reagent other than an additional blend. First, carboxyl-eapped poly(ethylene glycol) (HOOC-PEG-COOH) was synthesized. Dense CS/PEG composite membranes were then prepared by casting/evaporation of CS and HOOC-PEG-COOH mixture in acetic acid solution. Chitosan was chemically crosslinked due to the amidation between the carboxyl in HOOC-PEG-COOH and the amino in chitosan under heating, as confirmed by FTIR analysis. The hydrophilicity, water-resistance and mechanical properties of pure and crosslinked chitosan membranes were characterized, respectively. The results of water contact angle and water absorption showed that the hydrophilicity of chitosan membranes could be significantly improved, while no significant difference of weight loss between pure chitosan membranes and crosslinked ones was detected, indicating that composite membranes with amidation crosslinking possess excellent water resistanance ability. Moreover, the tensile strength of chitosan membranes could be significantly enhanced with the addition of certain amount of HOOC-PEG-COOH crosslinker, while the elongation at break didn't degrade at the same time. Additionally, the results of swelling behaviors in water at different pH suggested that the composite membranes were pH sensitive.  相似文献   

10.
High density polyethylene (HDPE)/polyethylene-Wock-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.  相似文献   

11.
Dense flat-sheet membranes were prepared from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) using the casting solvents chloroform and 1,1,2-trichloroethylene. X-ray diffraction, tapping mode atomic force microscopy (TM-AFM), and contact angle studies were used to characterize the membranes. The surface energy and the solubility parameters of the PPO membranes were determined from the measured contact angles and compared with the predicted ones from the group contribution method. Swelling experiments and pervaporation separation of methanol from its mixture with ethylene glycol over the entire range of concentration, 0-100%, were conducted using these membranes. Flory-Huggins theory was used to predict the sorption selectivity. The results are discussed in terms of the solubility parameter approach and as function of the morphological characteristics of the membranes. It was found that PPO membranes prepared with chloroform exhibited better pervaporation performance than PPO membranes prepared with 1,1,2-trichloroethylene.  相似文献   

12.
Aligned poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL)/poly(ethylene glycol)(PEG) fibrous membranes were fabricated by electrospinning. Their morphology, thermal stability, mechanical properties, hydrophilic properties and in vitro degradation behaviors were investigated. With increasing the content of PEG, the PLLA/PCL/PEG blend fibers become thinner due to the increment in solution conductivity and decrease in solution viscosity. The thermal stability, hydrophilic properties, the tensile strength and elongation-at-break of PLLA/PCL/PEG blend fibrous membranes were improved, but porosity were decreased with the content of PEG changing from 10 wt% to 30 wt%. Furthermore, the incorporation of PEG enhanced the degradation of the PLLA/PCL/PEG fibrous membranes due to the better hydrophilic properties. In addition, the PLLA/PCL/PEG fibrous membranes have no toxic effect on proliferation of adipose-derived stem cells.  相似文献   

13.
Different viscosity grade sodium alginate (NaAlg) membranes and modified sodium alginate membranes prepared by solution casting method and crosslinked with glutaraldehyde in methanol:water (75:25) mixture were used in pervaporation (PV) separation of water+acetic acid (HAc) and water+isopropanol mixtures at 30 °C for feed mixtures containing 10–50 mass% of water. Equilibrium swelling experiments were performed at 30 °C in order to study the stability of membrane in the fluid environment. Membranes prepared from low viscosity grade sodium alginate showed the highest separation selectivity of 15.7 for 10 mass% of water in the feed mixture, whereas membranes prepared with high viscosity grade sodium alginate exhibited a selectivity of 14.4 with a slightly higher flux than that observed for the low viscosity grade sodium alginate membrane. In an effort to increase the PV performance, low viscosity grade sodium alginate was modified by adding 10 mass% of polyethylene glycol (PEG) with varying amounts of poly(vinyl alcohol) (PVA) from 5 to 20 mass%. The modified membranes containing 10 mass% PEG and 5 mass% PVA showed an increase in selectivity up to 40.3 with almost no change in flux. By increasing the amount of PVA from 10 to 20 mass% and keeping 10 mass% of PEG, separation selectivity decreased systematically, but flux increased with increasing PVA content. The modified sodium alginate membrane with 5% PVA was further studied for the PV separation of water+isopropanol mixture for which highest selectivity of 3591 was observed. Temperature effect on pervaporation separation was studied for all the membranes; with increasing temperature, flux increased while selectivity decreased. Calculated Arrhenius parameters for permeation and diffusion processes varied depending upon the nature of the membrane.  相似文献   

14.
A novel synthesis of poly(ethylene glycol) (PEG)-grafted poly(urethanes) (PURs) is described based on a precursor PUR containing free amino groups in the main chain. Three different poly(urethane) backbones were prepared: a homopoly(urethane) comprised of N-Bocdiethanolamine (BDA) and 4,4′-methylenebis(phenyl isocyanate) (MDI), a copoly(urethane) (COPUR) consisting of BDA, N-benzyldiethanolamine and MDI, and a poly(urethane urea) (PUU) that was prepared from BDA, MDI, and ethylenediamine as the chain extender. The Mn of these poly(urethanes) ranged from 32,000 to 72,000 g/mol. PEG (750, 1,900, and 5,000 g/mol) was grafted onto the boc-deprotected poly(urethanes) via the chloroformate. Films of the polymers were spin cast from dilute solutions, annealed, and the surfaces analyzed by goniometry. Water contact angle data indicates increasing PEG surface coverage of the poly(urethanes) with increasing PEG molecular weight. Reorientation of the polymer films is evidenced by contact angle hysteresis. Polymer thrombogenicity, which was studied using blood perfusion experiments, shows that COPUR-g-PEG5000 and PUU-g-PEG5000 exhibit very little platelet adhesion. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3441–3448, 1999  相似文献   

15.
Thermosetting blends of a biodegradable poly(ethylene glycol)‐type epoxy resin (PEG‐ER) and poly(?‐caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass‐transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG‐ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG‐ER blends, that is, a PCL‐rich phase and a PEG‐ER crosslinked phase composed of an MAH‐cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase‐separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG‐ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2833–2843, 2004  相似文献   

16.
Poly(D ,L -lactide)–poly(ϵ-caprolactone)–poly(ethylene glycol)–poly(ϵ-caprolactone)–poly(D ,L -lactide) block copolymer (PLA–PCL–PEG–PCL–PLA) was prepared by copolymerization of ϵ-caprolactone (ϵ-CL) and D ,L -lactide (D ,L -LA) initiated by potassium poly(ethylene glycol)ate in THF at 25°C. The copolymers with different composition were synthesized by adjusting the mole ratio of reaction mixture. The resulted copolymers were characterized by 1H-NMR, 13C-NMR, IR, DSC, and GPC. Efforts to prepare copolymers with the corresponding structure of PCL–PLA–PEG–PLA–PCL and D ,L -lactide/ϵ-caprolactone random copolymers were not successful. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
A family of crosslinked poly(ethylene glycol) diacrylate (XLPEGDA) materials was synthesized via free-radical photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) solutions in water. These materials are potential fouling-resistant coatings for ultrafiltration (UF) membranes. PEGDA chain length (n = 10–45, where n is the average number of ethylene oxide units in the PEGDA molecule) and water content in the prepolymerization mixture (0–80 wt.%) were varied, resulting in XLPEGDA materials with water permeability values ranging from 0.5 to 150 L μm/(m2 h bar). Generally, water permeability increased with increasing prepolymerization water content and with increasing PEGDA chain length. Moreover, water permeability exhibits a strong correlation with equilibrium water uptake. However, solute rejection, probed using poly(ethylene glycol)s of well defined molar mass, decreased with increasing prepolymerization water content and increasing PEGDA chain length. That is, there is a tradeoff between water permeability and separation properties. Finally, the fouling resistance of XLPEGDA materials was characterized via contact angle measurements and static protein adhesion experiments. From these results, XLPEGDA surfaces are more hydrophilic in samples prepared at higher prepolymerization water content or with longer PEGDA chains, and the more hydrophilic surfaces generally exhibit less BSA accumulation.  相似文献   

18.
To endow hydrophobic poly(vinylidene fluoride) (PVDF) membranes with reliable hydrophilicity and protein resistance, an amphiphilic hyperbranched-star polymer (HPE-g-MPEG) with about 12 hydrophilic arms in each molecule was synthesized by grafting methoxy poly(ethylene glycol) (MPEG) to the hyperbranched polyester (HPE) molecule using terephthaloyl chloride (TPC) as the coupling agent and blended with PVDF to fabricate porous membranes via phase inversion process. The chemical composition changes of the membrane surface were confirmed by X-ray photoelectron spectroscopy (XPS), and the membrane morphologies were measured by scanning electron microscopy (SEM). Water contact angle, static protein adsorption, and filtration experiments were used to evaluate the hydrophilicity and anti-fouling properties of the membranes. It was found that MPEG segments of HPE-g-MPEG enriched at the membrane surface substantially, while the water contact angle decreased as low as 49 degrees for the membrane with a HPE-g-MPEG/PVDF ratio of 3/10. More importantly, the water contact angle of the blend membrane changed little after being leached continuously in water at 60 degrees C for 30 days, indicating a quite stable presence of HPE-g-MPEG in the blend membranes. Furthermore, the blend membranes showed lower static protein adsorption, higher water and protein solution fluxes, and better water flux recovery after cleaning than the pure PVDF membrane.  相似文献   

19.
Calcium alginate-chitosan (CA/CS) blended membranes were prepared and crosslinked with maleic anhydride (MA) for the pervaporation (PV) separation of ethylene glycol (EG)/water mixtures at 30°C. The structure and properties of blend membranes were studied with the aid of FTIR, XRD, TGA, and SEM. The effect of experimental parameters such as feed composition, membrane thickness, and permeate pressure on separation performance of the MA crosslinked membranes were determined in terms of flux, selectivity, and pervaporation separation index. Sorption studies were carried out to evaluate the extent of interaction and degree of swelling of the blend membranes in pure, as well as in binary mixtures. The experimental results suggested that the crosslinked membrane (M-CA/CS) exhibited a good selectivity of 302 at a normalized flux of 0.38 kg.m? 2.h? 1.10 μ m at 30°C for 96.88 wt% EG aqueous solution.  相似文献   

20.
A series of the semi-interpenetrating polymer network (semi-IPN) membranes based on sulfonated polyimide and poly(ethylene glycol) diacrylate were prepared and characterized comparing with pure sulfonated polyimide membrane and commercially available membrane, Nafion® 117. The proton conductivity increased with the increase of poly(ethylene glycol) diacrylate contents in spite of the decrease in ion exchange capacity which is a key factor to improve the proton conductivity. The water stability of semi-IPN membranes containing poly(ethylene glycol) diacrylate is higher than the pure sulfonated polyimide membrane. Morphological structure showed that amorphous nature of the films also increased with the poly(ethylene glycol) diacrylate contents, which could make a crosslink, so that the crystallinity of polyimide could disappear. Semi-IPN membranes based on sulfonated polyimide and poly(ethylene glycol) diacrylate, which show good conductivity comparable to Nafion® 117 in the range of 20-50% content of poly(ethylene glycol) diacrylate, could be promising proton conducting membranes in fuel cell application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号