共查询到20条相似文献,搜索用时 15 毫秒
1.
Mohamed Bensaada Driss Esselaoui Pierre Saramito 《Numerical Methods for Partial Differential Equations》2005,21(6):1099-1121
It has come to the attention of the editors and publisher that an article published in Numerical Methods and Partial Differential Equations, “Second‐order Galerkin‐Lagrange method for the Navier‐Stokes equations,” by Mohamed Bensaada, Driss Esselaoui, and Pierre Saramito, Numer Methods Partial Differential Eq 21(6) (2005), 1099–1121 included large portions that were copied from the following paper without proper citation: “Convergence and nonlinear stability of the Lagrange‐Galerkin method for the Navier‐Stokes equations,” Endre Suli, Numerische Mathematik, Vol. 53, No. 4, pp. 459–486 (July, 1988). We have retracted the paper and apologize to Dr. Suli Numer Methods Partial Differential Eq (2007)23(1)211 . 相似文献
2.
Yinnian He Yan Zhang Yueqiang Shang Hui Xu 《Numerical Methods for Partial Differential Equations》2012,28(5):1620-1642
A combination method of the Newton iteration and two‐level finite element algorithm is applied for solving numerically the steady Navier‐Stokes equations under the strong uniqueness condition. This algorithm is motivated by applying the m Newton iterations for solving the Navier‐Stokes problem on a coarse grid and computing the Stokes problem on a fine grid. Then, the uniform stability and convergence with respect to ν of the two‐level Newton iterative solution are analyzed for the large m and small H and h << H. Finally, some numerical tests are made to demonstrate the effectiveness of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012 相似文献
3.
Qingfang Liu Yanren Hou Qingchang Liu 《Numerical Methods for Partial Differential Equations》2013,29(5):1504-1521
A two‐level method in space and time for the time‐dependent Navier‐Stokes equations is considered in this article. The approximate solution uM∈HM is decomposed into the large eddy component v∈Hm(m < M) and the small eddy component w∈H. We obtain the large eddy component v by solving a standard Galerkin equation in a coarse‐level subspace Hm with a time step length k, whereas the small eddy component w is derived by solving a linear equation in an orthogonal complement subspace H with a time step length pk, where p is a positive integer. The analysis shows that our two‐level scheme has long‐time stability and can reach the same accuracy as the standard Galerkin method in fine‐level subspace HM for an appropriate configuration of p and m. Moreover, some numerical examples are provided to complement our theoretical analysis. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
4.
Yinnian He Aiwen Wang Zhangxin Chen Kaitai Li 《Numerical Methods for Partial Differential Equations》2003,19(6):762-775
An optimal nonlinear Galerkin method with mixed finite elements is developed for solving the two‐dimensional steady incompressible Navier‐Stokes equations. This method is based on two finite element spaces XH and Xh for the approximation of velocity, defined on a coarse grid with grid size H and a fine grid with grid size h ? H, respectively, and a finite element space Mh for the approximation of pressure. We prove that the difference in appropriate norms between the solutions of the nonlinear Galerkin method and a classical Galerkin method is of the order of H5. If we choose H = O(h2/5), these two methods have a convergence rate of the same order. We numerically demonstrate that the optimal nonlinear Galerkin method is efficient and can save a large amount of computational time. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 762–775, 2003. 相似文献
5.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hj ~ h, kj ~ k, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005 相似文献
6.
Jérôme Droniou Robert Eymard 《Numerical Methods for Partial Differential Equations》2009,25(1):137-171
We present finite volume schemes for Stokes and Navier‐Stokes equations. These schemes are based on the mixed finite volume introduced in (Droniou and Eymard, Numer Math 105 (2006), 35‐71), and can be applied to any type of grid (without “orthogonality” assumptions as for classical finite volume methods) and in any space dimension. We present numerical results on some irregular grids, and we prove, for both Stokes and Navier‐Stokes equations, the convergence of the scheme toward a solution of the continuous problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009 相似文献
7.
Least‐squares mixed finite element schemes are formulated to solve the evolutionary Navier‐Stokes equations and the convergence is analyzed. We recast the Navier‐Stokes equations as a first‐order system by introducing a vorticity flux variable, and show that a least‐squares principle based on L2 norms applied to this system yields optimal discretization error estimates. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 441–453, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10015 相似文献
8.
This article focuses on discontinuous Galerkin method for the two‐ or three‐dimensional stationary incompressible Navier‐Stokes equations. The velocity field is approximated by discontinuous locally solenoidal finite element, and the pressure is approximated by the standard conforming finite element. Then, superconvergence of nonconforming finite element approximations is applied by using least‐squares surface fitting for the stationary Navier‐Stokes equations. The method ameliorates the two noticeable disadvantages about the given finite element pair. Finally, the superconvergence result is provided under some regular assumptions. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 421–436, 2007 相似文献
9.
An augmented stress‐based mixed finite element method for the steady state Navier‐Stokes equations with nonlinear viscosity 下载免费PDF全文
Jessika Camaño Gabriel N. Gatica Ricardo Oyarzúa Ricardo Ruiz‐Baier 《Numerical Methods for Partial Differential Equations》2017,33(5):1692-1725
A new stress‐based mixed variational formulation for the stationary Navier‐Stokes equations with constant density and variable viscosity depending on the magnitude of the strain tensor, is proposed and analyzed in this work. Our approach is a natural extension of a technique applied in a recent paper by some of the authors to the same boundary value problem but with a viscosity that depends nonlinearly on the gradient of velocity instead of the strain tensor. In this case, and besides remarking that the strain‐dependence for the viscosity yields a more physically relevant model, we notice that to handle this nonlinearity we now need to incorporate not only the strain itself but also the vorticity as auxiliary unknowns. Furthermore, similarly as in that previous work, and aiming to deal with a suitable space for the velocity, the variational formulation is augmented with Galerkin‐type terms arising from the constitutive and equilibrium equations, the relations defining the two additional unknowns, and the Dirichlet boundary condition. In this way, and as the resulting augmented scheme can be rewritten as a fixed‐point operator equation, the classical Schauder and Banach theorems together with monotone operators theory are applied to derive the well‐posedness of the continuous and associated discrete schemes. In particular, we show that arbitrary finite element subspaces can be utilized for the latter, and then we derive optimal a priori error estimates along with the corresponding rates of convergence. Next, a reliable and efficient residual‐based a posteriori error estimator on arbitrary polygonal and polyhedral regions is proposed. The main tools used include Raviart‐Thomas and Clément interpolation operators, inverse and discrete inequalities, and the localization technique based on triangle‐bubble and edge‐bubble functions. Finally, several numerical essays illustrating the good performance of the method, confirming the reliability and efficiency of the a posteriori error estimator, and showing the desired behavior of the adaptive algorithm, are reported. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1692–1725, 2017 相似文献
10.
Rodolfo Araya Abner H. Poza Frédéric Valentin 《Numerical Methods for Partial Differential Equations》2012,28(3):782-806
This work combines two complementary strategies for solving the steady incompressible Navier–Stokes model with a zeroth‐order term, namely, a stabilized finite element method and a mesh–refinement approach based on an error estimator. First, equal order interpolation spaces are adopted to approximate both the velocity and the pressure while stability is recovered within the stabilization approach. Also designed to handle advection dominated flows under zeroth‐order term influence, the stabilized method incorporates a new parameter with a threefold asymptotic behavior. Mesh adaptivity driven by a new hierarchical error estimator and built on the stabilized method is the second ingredient. The estimator construction process circumvents the saturation assumption by using an enhancing space strategy which is shown to be equivalent to the error. Several numerical tests validate the methodology. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011 相似文献
11.
S. Faure 《Numerical Methods for Partial Differential Equations》2005,21(2):242-271
The aim of this article is to describe a colocated finite volume approximation of the incompressible Navier‐Stokes equation and study its stability. One of the advantages of colocated finite volume space discretizations over staggered space discretizations is that all the variables share the same location; hence, the possibility to more easily use complex geometries and hierarchical decompositions of the unknowns. The time discretization used in the scheme studied here is a projection method. First, we give the full discretization of the incompressible Navier‐Stokes equations, then, we state the stability result and prove it following the methods of Marion and Temam. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005 相似文献
12.
We formulate a subgrid eddy viscosity method for solving the steady‐state incompressible flow problem. The eddy viscosity does not act on the large flow structures. Optimal error estimates are obtained for velocity and pressure. The numerical illustrations agree completely with the theoretical results. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005 相似文献
13.
This article mainly concerns modeling the stochastic input and its propagation in incompressible Navier‐Stokes(N‐S) flow simulations. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as trial basis to represent the random space. A standard Galerkin projection is applied in the random dimension to derive the equations in the weak form. The resulting set of deterministic equations is then solved with standard methods to obtain the mean solution. In this article, the main method employs the Hermite polynomial as the basis in random space. Numerical examples are given and the error analysis is demonstrated for a model problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010 相似文献
14.
On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems 下载免费PDF全文
M. Akbas S. Kaya L. G. Rebholz 《Numerical Methods for Partial Differential Equations》2017,33(4):999-1017
We prove long‐time stability of linearly extrapolated BDF2 (BDF2LE) timestepping methods, together with finite element spatial discretizations, for incompressible Navier‐Stokes equations (NSE) and related multiphysics problems. For the NSE, Boussinesq, and magnetohydrodynamics schemes, we prove unconditional long time L2 stability, provided external forces (and sources) are uniformly bounded in time. We also provide numerical experiments to compare stability of BDF2LE to linearly extrapolated Crank‐Nicolson scheme for NSE, and find that BDF2LE has better stability properties, particularly for smaller viscosity values. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 999–1017, 2017 相似文献
15.
《Mathematical Methods in the Applied Sciences》2018,41(5):2119-2139
In this paper, we consider low‐order stabilized finite element methods for the unsteady Stokes/Navier‐Stokes equations with friction boundary conditions. The time discretization is based on the Euler implicit scheme, and the spatial discretization is based on the low‐order element (P1−P1 or P1−P0) for the approximation of the velocity and pressure. Moreover, some error estimates for the numerical solution of fully discrete stabilized finite element scheme are obtained. Finally, numerical experiments are performed to confirm our theoretical results. 相似文献
16.
Yinnian He 《Numerical Methods for Partial Differential Equations》2005,21(5):875-904
In this article we consider a spectral Galerkin method with a semi‐implicit Euler scheme for the two‐dimensional Navier‐Stokes equations with H2 or H1 initial data. The H2‐stability analysis of this spectral Galerkin method shows that for the smooth initial data the semi‐implicit Euler scheme admits a large time step. The L2‐error analysis of the spectral Galerkin method shows that for the smoother initial data the numerical solution u exhibits faster convergence on the time interval [0, 1] and retains the same convergence rate on the time interval [1, ∞). © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005. 相似文献
17.
Fande Kong Yichen Ma Junxiang Lu 《Numerical Methods for Partial Differential Equations》2011,27(2):255-276
This article is concerned about an optimization‐based domain decomposition method for numerical simulation of the incompressible Navier‐Stokes flows. Using the method, an classical domain decomposition problem is transformed into a constrained minimization problem for which the objective functional is chosen to measure the jump in the dependent variables across the common interfaces between subdomains. The Lagrange multiplier rule is used to transform the constrained optimization problem into an unconstrained one and that rule is applied to derive an optimality system from which optimal solutions may be obtained. The optimality system is also derived using “sensitivity” derivatives instead of the Lagrange multiplier rule. We consider a gradient‐type approach to the solution of domain decomposition problem. The results of some numerical experiments are presented to demonstrate the feasibility and applicability of the algorithm developed in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011 相似文献
18.
A method for solving the time dependent Navier‐Stokes equations, aiming at higher Reynolds' number, is presented. The direct numerical simulation of flows with high Reynolds' number is computationally expensive. The method presented is unconditionally stable, computationally cheap, and gives an accurate approximation to the quantities sought. In the defect step, the artificial viscosity parameter is added to the inverse Reynolds number as a stability factor, and the system is antidiffused in the correction step. Stability of the method is proven, and the error estimations for velocity and pressure are derived for the one‐ and two‐step defect‐correction methods. The spacial error is O(h) for the one‐step defect‐correction method, and O(h2) for the two‐step method, where h is the diameter of the mesh. The method is compared to an alternative approach, and both methods are applied to a singularly perturbed convection–diffusion problem. The numerical results are given, which demonstrate the advantage (stability, no oscillations) of the method presented. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009 相似文献
19.
We propose and analyze a two‐level method of discretizing the nonlinear Navier‐Stokes equations with slip boundary condition. The slip boundary condition is appropriate for problems that involve free boundaries, flows past chemically reacting walls, and other examples where the usual no‐slip condition u = 0 is not valid. The two‐level algorithm consists of solving a small nonlinear system of equations on the coarse mesh and then using that solution to solve a larger linear system on the fine mesh. The two‐level method exploits the quadratic nonlinearity in the Navier‐Stokes equations. Our error estimates show that it has optimal order accuracy, provided that the best approximation to the true solution in the velocity and pressure spaces is bounded above by the data. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 26–42, 2001 相似文献
20.
《Mathematical Methods in the Applied Sciences》2018,41(13):5091-5095
This paper is concerned with 3‐dimensional steady compressible Navier‐Stokes equations. A Liouville‐type theorem is proved when some suitable conditions are satisfied. 相似文献