首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Polyphenylsulfone (PPSU) was applied for the first time in the hydrophobic PV process. Nanocomposite membranes of PPSU/graphene (Gr) nanosheets were prepared and used to separate isopropyl benzene (cumene) from water via pervaporation (PV). Analysis of the mechanical properties of the membranes showed that the tensile strength and Young's modulus had an increasing trend with the incorporation of Gr into PPSU. The water contact angle of the membranes had a rising trend with the addition of Gr, confirming the improved hydrophobicity of membranes. In the PV experiments, the membrane containing 3.5 wt% Gr provided the highest separation factor, which was 4.5-fold as much as that of the neat PPSU membrane. Cumene separation from water by the PPSU/3.5 wt% Gr membrane was associated with the total flux of 132.73 gMH, the separation factor of 1566.36, and the PSI of 208,124.8 gMH.  相似文献   

2.
Particulate matter (PM) is a major air pollutant, which has a significant impact on public health. Filtration of PM through filters is a common method to protect the environment. However, the effective removal of PM with conventional filters still remains a challenge because of its small sizes. Here, we reported the formation of ultrafine polyamide 6 (PA‐6) nanofiber membranes formed with needleless electrospinning, in which both relative humidity condition and electrode type were included in the discussion. The PA‐6S nanofibers formed by using spiral electrode as a spinneret at 60% RH had the diameter of 33 nm, while the PA‐6C nanofibers formed by using cylindrical electrode had the diameter of 120 nm. With the integration of fine diameter, small pore size, and high porosity, the resultant PA‐6S nanofiber membrane exhibits high filtration efficiency of 99.42% and low pressure drop of 85.5 Pa under a face velocity of 85 L/min. Besides, it took only 10 minutes to reduce the concentration of PM2.5 from 999 to 34.1 μg/m3 when used to filter real PM particles.  相似文献   

3.
Although macromolecular fouling of microfiltration membranes is one of the critical factors governing the performance of these filtration processes, there is still little fundamental understanding of the underlying phenomena that influence the initiation, rate, and extent of fouling. We have obtained experimental data for the flux decline during the stirred cell filtration of different commercial preparations of bovine serum albumin (BSA) through asymmetric polyethersulfone microfiltration membranes. The fouling characteristics of these commercial solutions varied substantially, with the flux decline directly related to the technique utilized to initially precipitate and prepare the BSA. Prefiltration of BSA solutions prior to microfiltration substantially reduced their fouling tendency, with the degree of improvement increasing as the prefiltration was performed through smaller molecular weight cut-off membranes. The protein solutions were also characterized using gel permeation chromatography (GPC), with the fouling tendency of the different BSA preparations highly correlated with the concentration of BSA dimers and other high molecular weight species present in these BSA solutions. These results suggest that BSA fouling of these microfiltration membranes is associated with the deposition of trace quantities of aggregated and/or denatured BSA, with these fouling species serving as initiation sites for the continued deposition of bulk protein.  相似文献   

4.
In a previous paper [Ding et al., J. Membr. Sci. 276 (2006) 232], we have investigated the performance in microfiltration of mineral suspensions of a novel filtration pilot consisting in overlapping ceramic membranes disks rotating at same speed on two parallel shafts. In this paper, we investigate a modification of this concept in which the ceramic disks of one shaft were replaced by non-permeating metal disks of same size rotating at a speed different from that of membranes. We also operated the pilot without disks on the 2nd shaft in order to eliminate membrane overlapping. When using metal disks with radial vanes, permeate fluxes were found to be 50–60% higher than those obtained in the same conditions with the previous design using only ceramic disks. By comparing permeate fluxes in different configurations, membranes on both shafts, membranes on the 1st shaft with and without metal disks on the 2nd shaft, we showed that, at a feed concentration of 200 g L−1, the effect on permeate flux J, of shear rate increment due to membrane overlapping, could be completely offset by the high concentration increase between two adjacent and overlapping membranes. Raising the ceramic disks rotation speed Nc had a larger effect on J than increasing the metal disks speed Nm. For Nc = 32.16 Hz (1930 rpm) and Nm = 2.4 Hz (144 rpm), J reached 1790 L h−1 m−2 at 310 kPa, versus 1100 L h−1 m−2 for Nc = 12.3 Hz (738 rpm) and Nm = 22.26 Hz (1336 rpm) (for the same total sum Nc + Nm). Measurements of electrical power consumed by friction on rotating disks showed that the energy spent per m3 of permeate was lowest when using metal disk with vanes rotating at low speed and ceramic disks rotating at high speed.  相似文献   

5.
In this present study, the facile approaches of coagulants and in situ free radical polymerization method for modulating configurations and performances of polyvinylidene fluoride (PVDF) membranes are investigated. Configuration images show that the supramolecular aggregates of PVDF‐P(PEGMA‐r‐MMA) caused by in situ polymerization act as “template” of the tuned configurations of the resultant PVDF membranes. During delay demixing process (ethanol coagulant), the confine of the aggregates resulted in shift of the cauliflower nanograins to the stripe‐type nanograins. On the other hand, for the membranes prepared from the instantaneous demixing process in water coagulant, the aggregates contributed to the formation of the confined finger‐like structures and the globule agglomerates that constructed the whole thickness of the membrane bulk. Furthermore, those narrow distribution supramolecular aggregates and variation coagulants (water and ethanol) also yield the tuned performances. The membranes' improved mechanical properties and limited hydrophilicity improvement are attributed to the strong interconnection between the aggregates. Because of the fore‐forming of the P(PEGMA‐r‐MMA) aggregates with narrow distribution, all PVDF membranes prepared from the two coagulants possess enlarged flux, narrow distribution mean effective pore size (μ), and molecular weight cut‐off. The delay demixing process contributes to the narrower μ and molecular weight cut‐off, as well increased flux. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Polyimide and hybrid polyimide‐siloxane were synthesized by polycondensation, imidization, and sol‐gel reaction. The polyimides were prepared from pyromellitic dianhydride (PMDA) and 4,4‐oxydianiline (ODA) in N‐methyl‐2‐pyrollidone (NMP). Trimethoxyvinyl silane (TMVS) was used as a source of silica. Their surface morphologies, structures and thermal performances were determined using scanning electron microscopy (SEM), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that the silica particles were finely and rather homogeneously dispersed in polymers. The glass transition temperature (Tg) of hybrid membrane materials increased with the increasing silica content. TGA analysis showed that polyimides were thermally stable with silica. Modified polyimide‐siloxane films, thermal characteristics were found to be better than the polyimide films without silica. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This paper addresses the problem of extrapolating the technique used for filtration enhancement by superimposing pressure and flow pulsations to a pilot model of an actual production unit equipped with 14 Carbosep mineral membranes. The experimental results obtained with raw apple juice show that the maximum permeate flux enhancement is obtained at a frequency of 1 Hz and a pulsed volume of 200 ml which is significantly less than the internal volume of the membranes. The flux enhancement is a linear function of the ratio of pulsatile to steady flow and can reach up to 140% when the circuit settings are unchanged. However, when the time-averaged mean transmembrane pressure is conserved the flux enhancement is much smaller and barely exceeds 25%.  相似文献   

8.
Charged hybrid membranes with anionic‐ or cationic‐exchange groups have attracted increasing interest due to their higher thermal stabilities and structural flexibilities which are considered suitable for use in some harsh conditions, such as higher temperature and strongly oxidizing circumstances, for industrial applications. To develop new routes to synthesize the negatively charged hybrid membranes, a series of hybrid membranes were prepared via free radical polymerization of glycidylmethacrylate (GMA) and γ‐methacryloxypropyl trimethoxy silane (MPTMS) monomers, and ring‐opening of epoxide to create negatively charged ? SO3H groups in the polymer chains. The fundamental properties of these prepared membranes were characterized through TGA, ion‐change capacity (IEC), and MALDI–TOF mass spectra. TGA showed that the thermal degradation temperature of these membranes could reach up to 300°C and the temperature of the first endothermic peak decreased with an increase in the content of ? SO3H groups. IEC measurements showed that their IECs were within the range of 0.22–0.35 mmol g?1. MALDI–TOF spectrometry indicated that the incorporation of GMA into the hybrid matrix could improve the structural stability of the membranes. These findings demonstrated that the ion‐exchange properties and structural stability of negatively charged hybrid membranes can be conveniently controlled by adjusting the GMA moiety in the hybrid matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Thin layers of gold (700 Å) were deposited on manufactured alumina pourous supports to yield nanopores with openings of <7 nm. A self-assembled monolayer (SAM) of alkyl thiols was then attached to provide a hydrophobic support for trialkyl phosphine oxide-based metal ion carriers. The resulting gated membranes provided a barrier to ions including H+, and Ca2+, NO3, and CH3COO. When an aqueous feed solution of 4.2 mM uranyl nitrate and 1 M lithium nitrate pH 4, and a receiving solution of 1 M sodium acetate pH 5.5 were used 100% of the metal was transported across the membrane by facilitated transport via the phosphate or phosphine oxide carrier. The thin gates transported metal ions as neutral nitrate complexes with fluxes high enough to be limited by the alumina support. The flux rates of 200,000 metal ions per pore per second are only a factor of 5 below that observed for the potassium channel. High selectivity of U over Eu is observed until the [U] is <0.84 mM in the feed solution, despite the fact the Eu actually transports faster when U is not present. This work demonstrates that selectivity can be added without impeding transport by using thin selective layers.  相似文献   

10.
Flat‐sheet asymmetric polyethersulfone (PES) membranes were prepared from polyethersulfone (PES)/ polyethylene glycol (PEG)/ N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion induced by immersion precipitation in water coagulation bath. Effects of propionic acid (PA) as a non‐solvent additive (NSA) on morphology and performance of the membranes prepared from PES/PEG 6000/NMP system in water coagulation bath were investigated. The cross section morphology of the membranes was studied by scanning electron microscopy (SEM). In addition, performance of the membranes was studied by water content measurements and separation experiments using pure water and human serum albumin (HSA) protein solution as feeds. According to SEM analysis, it was found out that the NSA has a significant influence on the structure of the skin layer and the sublayer. The obtained results indicated that addition of PA to the casting solution decreases permeation flux of the prepared membranes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Highly stabilized and dispersible composites of polyethylene glycol and silica nanoparticle in aqueous drilling mud can provide desirable rheological and filtration properties for drilling jobs. Therefore, high-quality hydrophilic polyethylene glycol-nanosilica composite modified by amphipathic anionic sodium dodecyl sulfate (PEG-SiO2 NC-SDS) to improve the rheological and filtration properties of water-based muds (WBMs) was submitted. Test of zeta potential, functional groups, morphology, elemental composition, and temperature stability together with rheology and filtration tests were undertaken to assess the wide-ranging mud properties of the SDS modified PEG-SiO2 NC drilling muds. Zeta potential, FTIR, FESEM, EDX, and TGA results indicate that the SDS modified PEG-SiO2 NC was effectively formed and modified; it embodies exceptional thermal stability and is efficiently dispersed. The SDS modified PEG-SiO2 NC has a narrow size distribution range between 82 nm and 410 nm, and a specific surface area of 41.4 m2/g that is sufficiently high for particle-molecule interactions. Its rheological variables are notably shear-thinning and did not undergo notable fluctuation. The filtrate loss of 1.5 g SDS bearing PEG-SiO2 NC at 78 °F and 250 °F was only 5.4 ml and 9.6 ml, against 10.2 ml and 20.5 ml of the WBMs, respectively. High dispersion stability and high thermal stability aided its excellent viscosity and filtration control performance. Moreover, optimum rheological properties for the SDS modified PEG-SiO2 NC drilling muds with Bingham plastic and Ostwald-de-Waele models occurred with mud composition CD3 (CD3 = 1.5 g SDS modified PEG-SiO2 NC + WBM). Thus, this study can help to understand the applications of this nanocomposite as a potential viscosifier and filtrate loss control material for WBMs.  相似文献   

12.
Polyphenylsulfone/multiwalled carbon nanotubes/polyvinylpyrrolidone/1-methyl-2-pyrrolidone mixed matrix ultrafiltration flat-sheet membranes were fabricated via phase inversion process to inspect the heavy metals separation efficacy from aqueous media. Fabricated membranes cross-sectional morphological changes and the topographical alterations were assessed with Scanning electron microscopy (SEM) and atomic force microscopy (AFM). Particularly, MWCNTs assisted membranes exhibited better permeability ability as well as heavy metal removal enactment than virgin membrane. The dead-end filter unit was engaged in current research to examine the permeability and heavy metal removal competence of membranes. With the continuous enhancement of MWCNTs wt% in a polymer matrix, significant enhancement was observed with pure water flux study, from 41.69 L/m2 h to >185 L/m2 h as well as with the heavy metals separation study. Added additive MWCNTs can impact the pore sizes in membranes. The heavy metal separation results achieved, the membrane with 0.3 wt% of MWCNTs (PCNT-3) exhibited >98%, >76% and >72% for Pb2+, Hg2+ and Cd2+ ions, respectively. Overall, MWCNTs introduced PPSU membranes exposed best outcomes with heavy metals contained wastewater treatment.  相似文献   

13.
采用热分解方法,以醋酸镍为前驱体,以表面活性剂十八胺为溶剂、还原剂和稳定剂,在镍纳米微粒初生成时进行原位表面修饰,制备出接近单分散的镍微球.采用扫描电子显微镜、透射电子显微镜、X射线衍射仪、红外光谱仪等分析了产物的尺寸、形貌、晶体结构及成分.结果表明,所制备的镍微球具有面心立方结构,由分散性良好、尺寸为300~400nm的纳米微粒组成;其在有机介质中具有良好的分散性,同时保持磁性纳米微粒的特性,可望用于电磁屏蔽材料和吸波材料.  相似文献   

14.
Polypyrrole composite cation- and anion-exchange membranes (CEM and AEM), in which polypyrrole (PPY) coated on one surface of the membrane as a thin layer, were prepared by chemical polymerization of pyrrole in the presence of high oxidant concentration (Na2S2O8). Existence of polypyrrole layer on the both types of ion-exchange membranes were confirmed by recording their coating density, SEM images and conductivity. These membranes were extensively characterized by recording their properties such as water uptake, ion-exchange capacity, contact angle, permselectivity and membrane conductivity as a function of polymerization time such as. It was observed that due to coating of PPY for 2 h, membrane permselectivity of CEM for NaCl (0.907) was reduced to 0.873, while it was increased from 0.747 to 0.889 in the case of AEM. Similar behaviors were also obtained for bi-valent electrolytes. Electrodialysis experiments were also conducted with polypyrrole composite ion-exchange membranes using mixed electrolytic systems. Relative dialytic rates for NaCl with respect to other bi-valent electrolyte were varied in between 5 and 8 (depending on bi-valent electrolyte), which suggested the feasible and efficient separation of mono-valent from bi-valent electrolyte. Slower electro-migration of bi-valent electrolyte (CaCl2, MgCl2 and CuCl2) in comparison to NaCl was explained on the basis of synergetic effect of sieving of bulkier bi-valent cations by tight and rigid polypyrrole layer and the difference in electrostatic and hydrophobic–hydrophilic repulsion force between bi-valent cations and mono-valent cation. It was concluded that these composite membranes are suitable for the efficient separation of same type of charged ions by electro-driven separation techniques.  相似文献   

15.
Metal–organic frameworks (MOFs) are made up of metal centers and organic binders with larger surface area and distinct pore structures. Particularly significant advancement in MOF membranes has been achieved in three different directions: preparation of MOF membranes with larger surface area, improving the membrane performance by surface modification, and its usage with added features. However, its significance has not been completely known and concluded yet. MOF membranes are used in a variety of membrane-based separation like gas permeation, nanofiltration, pervaporation, membrane distillation, etc. This research aims to synthesize MOFs (ZIF-8 and ZIF-67) and MOF membranes (ZIF-8/PVDF and ZIF-67/PVDF) and used them in the pervaporative separation of the methanol/water mixture. MOFs and MOF membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetry analysis. Methanol/water mixtures were be used to study the performance of the prepared membranes. A study on the process parameters such as temperature (40, 45, 50, and 55°C), feed pressure (4, 8, 12, and 16 psi), and feed composition (10%, 20%, 30%, and 40% of water) was carried out to examine the effect of each process parameters for pure membrane. In contrast, Taguchi screening design was used to screen the most influential process variable. The optimized conditions based on Taguchi screening method were 55°C, 12 psi, and 40 %vol of water in feed. The obtained total flux of 425 L/m2h was observed for M3 membrane. As feed temperature increased, the total flux of all three membranes was increased.  相似文献   

16.
Phosphoric acid doped poly (2, 2′‐(m‐phenylene)‐5, 5′‐bibenzimidazole) (PBI) membranes were prepared by dissolving PBI powders in 85% phosphoric acid at 190–200°C and then promoting gelation of the PBI by cooling the solutions to ?18°C. The extent of acid doping of the PBI membranes was controlled by immersing the membrane in aqueous phosphoric acid solutions of different concentrations (acid de‐doping). The process of the acid de‐doping was faster than acid doping of membrane cast from N,N‐dimethylacetamide (DMAc). The de‐doping process caused shrinkage of the PBI membrane and thus an increase in the membrane strength due to the packing of PBI chains according to the X‐ray diffraction analysis. The tensile stress and proton conductivity of the obtained PBI membranes with different acid doping levels were measured. For a PBI (ηIV: 0.58 dL · g?1) membrane with an acid doping level of 7.0 (molar number of doped acid per mole repeat unit of PBI), the stress at break and proton conductivity at 120°C without humidification were 2.6 MPa and 5.1 × 10?2 S · cm?1, respectively. These results were comparable to those of the membranes cast from PBI solutions in DMAc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, new poly(acrylonitrile-co-methyl acrylate)/cellulose composite membranes were prepared firstly and then characterized. Then they were used in the removal of Fe(III) and Co(II) ions from wastewater with a stirred ultrafiltration cell. Also, alginic acid polymer was used as complexing agent to enhance the retention. In the filtration of Fe(III) and Co(II) solutions, the effects of pH, concentration of solutions, and pressure on the retention percentage were examined. Aqueous solutions of Fe(III) and Co(II) were filtrated at the stirred velocity of 400?rpm. The maximum retention percentage was found as 78.66% for Fe(III) solution at the pH of 3.3, concentration of 0.3?×?10?4 M Fe(III) solution, pressure of 40?psi by using 2.5 (w/v)% Poly(acrylonitrile-co-methyl acrylate)/cellulose composite membranes. For Co(II) solutions the maximum retention percentage was found as 77% at the pH of 6, concentration of 0.3?×?10?4 M Co(II) solution, pressure of 50?psi by using 2.5 (w/v)%Poly(acrylonitrile-co-methyl acrylate)/cellulose composite membranes.  相似文献   

18.
Multiblock sulfonated poly(arylene ether sulfone)s were synthesized to investigate the structural effects on their membrane properties. Three different types of sulfonated hydrophilic blocks were used; their structures possessed different acidity and local concentration of sulfonic acid groups. For the comparison between the block copolymers, a hydrophobic block with the same chemical structure and block length was used. The different acidities and local concentration were achieved using different sulfonation methods, such as postsulfonation and direct condensation with sulfonated monomers, and different monomers for preparing the hydrophilic block. The higher acidity and concentration of sulfonic acid groups resulted in higher proton conductivity under certain relative humidity conditions and phase separation as shown in the transmission electron microscopy analysis. The synthesized oligomers and polymers were well characterized, and the other physical properties were also investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2947–2957  相似文献   

19.
《先进技术聚合物》2018,29(1):481-489
In this study, polyhydroxybutyrate/poly(butyleneadipate‐co‐terephthalate) (PHB/PBAT) nanofibrous membranes were produced by electrospinning the blends of biodegradable PHB and PBAT. The antibacterial hydrophobic nanofiber membranes were obtained by grafting 1‐allylhydantoin and perfluorooctyl acrylate onto the PHB/PBAT membranes. The prepared nanofibrous membranes were chlorinated with chlorine bleach and characterized by scanning electron microscopy, Fourier transform infrared, and thermogravimetric analysis. The chlorinated nanofibrous membranes exhibited efficient antimicrobial activity against Escherichia coli O157:H7 (ATCC 43895) and Staphylococcus aureus (ATCC 6538) with 6.08 and 5.78 log reduction, respectively. The contact angle of this antibacterial membrane was 123.1° ± 1.9°. The treated membranes showed good stability and durability towards UV‐A light exposure and storage. Therefore, our designed antibacterial hydrophobic nanofibrous membranes may have great potential for use in food packaging.  相似文献   

20.
A new type of nanofiltration membrane is reported based on coating a sulfonated poly(ether ether ketone) (SPEEK) layer on top of a polyethersulfone support. The membranes were characterized by dextran mixtures, salt solutions as well as negatively charged dyes. The SPEEK coated nanofiltration membranes showed molecular weight cutoff for dextran in the range of ultrafiltration, however, rather high rejection for sodium sulfate; retention for salts in the order of RNa2SO4>RNaCl>RMgCl2RNa2SO4>RNaCl>RMgCl2; in addition, the membranes showed a 97–100% retention to the organic dyes. The rejection rates were improved by an increase in the coating thickness and the polymer concentration in the coating solution at the penalty of permeability decrease. Furthermore, it was found that pore penetration of SPEEK into the support membrane effectively constrained the swelling rate of SPEEK and increased the retention. The Donnan–Steric Pore Model was used to describe the transport properties of the membrane. Modeling identified a very tortuous passage within the active separation layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号