首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of interaction of Zn porphyrin (ZnPP) with TiO2 surfaces is investigated with a view to optimizing the synthesis of hybrid nanomaterials. The strategy consists of studying the adsorption of ZnPP on TiO2 flat surfaces by taking advantage of complementary surface characterization techniques. Combining a detailed X‐ray photoelectron spectroscopic analysis with AFM imaging allows ZnPP–surface and ZnPP intermolecular interactions to be discriminated. Probing the adsorption of ZnPP on TiO2 nanoparticles (NPs) reveals the dominant role of ZnPP‐mediated interactions, which are associated with the formation of ZnPP multilayers and/or with the state of aggregation of NPs. These preliminary investigations provide a guideline to synthesizing a novel ZnPP–TiO2 hybrid nanomaterial in a one‐step protocol. In this material, ZnPP molecules are presumably involved in the TiO2 lattice rather than on the NP surface. Furthermore, ZnPP molecules preserve their electronic properties within the TiO2 NPs, and this makes the ZnPP–TiO2 hybrid nanomaterial an excellent candidate for nanomedicine and related applications, such as localization of nanoparticles in cells and tissues or in photodynamic therapy.  相似文献   

2.
We demonstrate the multiple plasmonic effect on the photocurrent properties of photoanodes containing Ag or Au nanoparticles (NPs) loaded onto titanium dioxide film (Ag–TiO2 or Au–TiO2) on Au grating surfaces. Ag–TiO2 or Au–TiO2 nanocomposite particles are prepared by a flame spray pyrolysis route. The structures and morphologies of the prepared products are characterized by high‐resolution transmission electron microscopy. The Ag–TiO2 or Au–TiO2 composite NPs are deposited by spin coating onto the Au grating surfaces. The photoanode electrode is a layered structure of blu‐ray disc‐recordable grating substrate/Au/Ag (or Au)–TiO2/dye/electrolyte/indium‐tin oxide. The plasmonic effect is induced when Ag or Au NPs are located within the propagating surface plasmon (SP) field on the Au grating surface. The short‐circuit photocurrent is increased by exciting the grating‐coupled propagating SP on the Au gratings and is further enhanced by positioning the Ag or Au NPs within the grating‐coupled SP field. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Covalent surface modification of solid cellulose with well‐defined and chemically reactive dendrons is introduced as a platform for cellulose grafting with functional materials. Surface functionalization with a first generation dendron is achieved by esterification employing bifunctional molecules based on 2,2‐bis(hydroxymethyl) propionic acid (bis‐MPA) under mild conditions and short reaction times. The activated cellulose surface displays hydrophobic properties and contains two reactive alkene end‐groups per graft, which are used for covalent binding to active agents, as demonstrated by selective functionalization of the modified cellulose with fluorescent dye via photopatterning. The number of active end‐groups on the surface of cellulose is multiplied by divergent solid‐state synthesis of second and third generation dendrons having four and eight reactive sites per dendron, respectively. The dendrons are assembled in only few hours by a sequence of thiol‐ene/esterification reactions. The ability to accurately control the number of binding sites on the surface of cellulose allows fine tuning of the surface properties, as shown by the attachment of hydrophobic small molecules to the dendronized cellulose. The first, second and third generation dendrons allow preparing surfaces with increasing hydrophobicities; second and third generation dendrons functionalized with small perfluoroalkyl molecule display superhydrophobic properties. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2103–2114  相似文献   

4.
The objective of the study is to formulate exclusive block copolymer (BCP) nanocomposites by dispersing bcp end‐grafted nanoparticles (bcp‐g‐nps) of PMMA‐b‐PS‐g‐TiO2 within PS‐b‐PMMA matrix. PMMA‐b‐PS‐g‐TiO2 is synthesized using a “grafting‐to” approach and characterized by XPS and TGA to establish that the copolymer chains were bonded to NPs. Good dispersion of bcp‐g‐nps in PMMA and PS‐PMMA bcp films is observed, in contrast to poor dispersion in PS films. In PS‐PMMA films, the compatible and identical bcp nature of the end‐grafted polymer, and large NP size caused it to span across entire PS‐PMMA domains. Poor and good dispersion in PS and PMMA matrices, respectively, can be rationalized by the fact that NPs interactions are driven by the PMMA at the outer corona of the bcp‐g‐nps. Developing bcp‐g‐nps as a strategic route to preparation of highly dispersed high permittivity NPs like titanium dioxide (TiO2) in bcp matrix can have important ramifications for energy storage devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 468–478  相似文献   

5.
Polyethylene terephthalate (PET)/Polypropylene (PP)/TiO2 nanocomposites were prepared by compounding a PP/TiO2 nanocomposite premix with PET in absence and presence (up to 6 vol %) of maleic anhydride grafted polypropylene (PP‐g‐MA). In absence of PP‐g‐MA, the TiO2 nanoparticles were mainly located at the PET/PP interface and to a lesser extent in the dispersed PET droplets. As the TiO2 nanoparticles were coated by polyalcohol their surface could react with PP‐g‐MA and thus improving the compatibilization with PP. Therefore in presence of PP‐g‐MA the TiO2 nanoparticles were preferentially located in the PP. The incorporated TiO2 nanoparticles exerted a compatibilization effect on the PET/PP blend. Depending on the location of TiO2 three different compatibilization mechanisms were proposed to be at work: (1) Locating at the interface, the TiO2 nanoparticles decrease the free energy of mixing, and thus increase the thermodynamic stability of the nanocomposites; (2) The TiO2 nanoparticles at the interface also prevent the coalescence of PET droplets; (3) Preferentially located in the PP matrix, the TiO2 nanoparticles decreased the viscosity ratio which facilitated the droplet breakup of PET. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1616–1624, 2009  相似文献   

6.
We investigated the effect of hard additives, that is, magnetic nanoparticles (NPs) and metal NPs, on the ordered morphology of block copolymers by varying the NP concentration. To characterize the structural changes of a block copolymer associated with different NP loadings, small-angle X-ray scattering and transmission electron microscopy were performed. Monodisperse maghemite (γ-Fe2O3) NPs (7 nm in diameter) and silver (Ag) NPs (6 nm in diameter) with surfaces modified with oleic acids were synthesized, and a cylinder-forming poly(styrene-block-isoprene) diblock copolymer was used as a structure-directing matrix for the NPs. As the NP concentration increased, domains of NP aggregates were observed for both magnetic and metal NPs. In the case of mixtures of cylinder-forming poly(styrene-block-isoprene) and Ag NPs with weak particle–particle interactions, random aggregates of Ag NPs were observed, and the ordered morphology of the block copolymer lost its long-range order with an increase in the NP concentration. However, regular, latticelike aggregates obtained with γ-Fe2O3 NPs, because of the strong interparticle interactions, induced an intriguing morphological transformation from hexagonal cylinders to body-centered-cubic spheres via undulated cylinders, whereas the neat block copolymer did not show such a morphological transition over a wide range of temperatures. The interplay between magnetic NPs and the block copolymer was also tested with magnetic NPs of different sizes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3571–3579, 2006  相似文献   

7.
A key to realizing the sustainable society is to develop highly active photocatalysts for selective organic synthesis effectively using sunlight as the energy source. Recently, metal‐oxide‐supported gold nanoparticles (NPs) have emerged as a new type of visible‐light photocatalysts driven by the excitation of localized surface plasmon resonance of Au NPs. Here we show that visible‐light irradiation (λ>430 nm) of TiO2‐supported Au NPs with a bimodal size distribution (BM‐Au/TiO2) gives rise to the long‐range (>40 nm) electron transport from about 14 small (ca. 2 nm) Au NPs to one large (ca. 9 nm) Au NP through the conduction band of TiO2. As a result of the enhancement of charge separation, BM‐Au/TiO2 exhibits a high level of visible‐light activity for the one‐step synthesis of azobenzenes from nitrobenzenes at 25 °C with a yield greater than 95 % and a selectivity greater than 99 %, whereas unimodal Au/TiO2 (UM‐Au/TiO2) is photocatalytically inactive.  相似文献   

8.
The fabrication of novel hydrophobic, superhydrophobic, and oleophobic surfaces on glass using nanosilica particles modified with polymer brushes prepared via surface initiated Cu(0)‐mediated reversible‐deactivation radical polymerization was demonstrated. Monomers including n‐butyl acrylate, 2,2,2‐trifluoroethyl methacrylate, and 1,1,1,3,3,3‐hexafluoroisopropyl acrylate were used to synthesize a series of nanosilica–polymer organic/inorganic hybrid materials. Products were analyzed using infrared spectroscopy, thermogravimetric analysis, scanning and transmission electron microscopy. The coated nanosilica showed core–shell structures that contains polymer brushes up to 67 wt %. The application of these particles for modifying surface wettability was examined by covalently attaching them to glass via a recently developed one‐pot “grafting to” methodology using “thio‐bromo click” chemistry. Atomic force microscopy topographic images show up to 25 times increase in roughness of the coated glass compared to blank glass sample. Contact angle measurements showed that nanosilica coated with PBA and PTFEM produced hydrophobic glass surfaces, while a superhydrophobic and oleophobic surface was generated using nanosilica functionalized with PHFIPA. This novel methodology can produce superhydrophobic and oleophobic surfaces in an easy and fast way without the need for tedious and time‐consuming processes, such as layer‐by‐layer deposition, high temperature calcination, and fluorinated oil infusion. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018  相似文献   

9.
The potential to bias chemical reaction pathways is a significant goal for physicists and material researchers to design revolutionary materials. Recently, two‐dimensional materials have appeared as a promising candidate for exploring novel catalyst activity in organic reaction. In this context, herein we report an easy and efficient synthesis of substituted benzodiazepines in high yields through the graphene‐based mesoporous TiO2 nanocomposite (Gr@TiO2 NCs) catalyst. To validate the merits of the Gr@TiO2 NCs as a catalyst, we have also designed TiO2 nanoparticle (NPs) under similar conditions. Successful comprehension realization of Gr@TiO2 NCs and TiO2 NPs were concluded from the XRD, SEM, HR‐TEM, EDS elemental mapping, FT‐IR, Raman, UV–Vis and TGA analysis. Gr@TiO2 NCs has the propitious catalyst performance (~98%) over the TiO2 NPs (~77%), which could be scrutinized in terms of graphene support toward the TiO2 NPs and enable the large contact area between graphene and TiO2 NPs. Incorporated graphene maintaining TiO2 as a catalytically active and attracting electron to site isolation, as well as protecting TiO2 from oxidative degradation during the reaction. Moreover, the role of graphene is suggested to prolonged reaction duration, yield and unaltered throughout the reaction because of the π‐π interaction between graphene and TiO2 NPs. Additionally, the catalyst is recycled by filtration and reprocessed six times without having a significant loss in its catalytic activity.  相似文献   

10.
Novel amphiphilic comb‐dendronized diblock copolymers composed of hydrophobic Percec‐type dendronized polystyrene block and hydrophilic comb‐like poly(ethylene oxide) grafted polymethacrylate P(PEOMA) block were designed and synthesized via two steps of atom transfer radical polymerization (ATRP). The comb‐like P(PEOMA) prepared by ATRP of macromonomers (PEOMA) with two different molecular weights (Mn = 300 and 475) were used to initiate the sequent ATRP of dendritic styrene macromonomer (DS). The molecular weights and compositions of the obtained block copolymers were determined by 1H NMR analysis. The copolymers with relatively narrow polydispersities (1.27–1.38) were thus obtained. The bulk properties of comb‐dendronized block copolymers were studied by using differential scanning calorimetry, polarized optical microscopy and wide‐angle X‐ray diffraction (WAXD). Similar to dendronized homopolymers, the block copolymers exhibited hexagonal columnar liquid‐crystalline phase structure. By using such amphiphilic comb‐dendronized block copolymers as building blocks, the rich self‐assembly morphologies, such as twisted string, vesicle, and large compound micelle (LCM), were obtained in a mixture of CH3OH and THF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4205–4217, 2008  相似文献   

11.
An acid urethane oligodimethacrylate based on poly(ethylene glycol) was synthesized and used in the preparation of hybrid composites containing silsesquioxane sequences and titania domains formed through sol‐gel reactions along with silver/gold nanoparticles (Ag/Au NPs) in situ photogenerated during the UV‐curing process. The photopolymerization kinetics studied by Fourier transform infrared spectroscopy and photoDSC showed that the photoreactivity of the investigated formulations depends on the amount of titanium butoxide (5–20 wt %) added in the system subjected to UV irradiation. The introduction of 1 wt % AgNO3/AuBr3 in formulations slightly improved the degree of conversion but diminished the polymerization rates. The formation of hybrid materials comprising predominantly amorphous TiO2/SiO2 NPs, with or without Ag/Au NPs, was confirmed through specific analyses. The evaluation of photocatalytic activity demonstrated that the synthesized hybrid films are suitable for the complete removal of organic pollutants (phenolic compounds) from water under UV irradiation (200–350 min) at low intensity (found in the solar radiation). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1189–1204  相似文献   

12.
As a typical photocatalyst for CO2 reduction, practical applications of TiO2 still suffer from low photocatalytic efficiency and limited visible‐light absorption. Herein, a novel Au‐nanoparticle (NP)‐decorated ordered mesoporous TiO2 (OMT) composite (OMT‐Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO2 shows high photocatalytic performance for CO2 reduction under visible light. The ordered mesoporous TiO2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three‐dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO2 reduction under visible light by constructing OMT‐based Au‐SPR‐induced photocatalysts.  相似文献   

13.
Surface wetting is an important and relevant phenomenon in several different fields. Scientists have introduced a large number of applications where special surface wetting could be exploited. Here, we study wetting phenomena on high- and low-adhesive superhydrophobic liquid flame spray (LFS)-generated TiO2 coatings on paper and pigment-coated board substrates using water–ethanol solution as a probe liquid. Submicrometer-scale air gaps, which exist on superhydrophobic surfaces below the liquid droplets, were more stable with the ethanol increment than the larger-scale micrometric air gaps. With the droplet ethanol concentration of 15 wt%, static contact angle as high as 155?±?2° was measured on the LFS–TiO2-coated board. Transition from the low-adhesive wetting state to the high-adhesive state was demonstrated on the LFS–TiO2-coated paper. The LFS method enables efficient roll-to-roll production of surfaces with special wetting properties on economically viable board and paper substrate materials.  相似文献   

14.
TiO2 nanoparticles deposited on activated carbon (TiO2–NP–AC) was prepared and characterized by XRD and SEM analysis. Subsequently, simultaneous ultrasound‐assisted adsorption of Cu2+ and Cr3+ ions onto TiO2‐NPs‐AC after complexation via eriochrome cyanine R (ECR) has been investigated with UV–Vis and FAA spectrophotometer. Spectra overlapping of the ECR‐Cu and ECR‐Cr complex was resolve by derivative spectrophotometric technique. The effects of various parameters such as initial Cu2+ (A) and Cr3+ (B) ions concentrations, TiO2‐NPs‐AC mass (C), sonication time (D) and pH (E) on the removal percentage were investigated and optimized by central composite design (CCD). The optimize conditions were set as: 4.21 min, 0.019 mg, 20.02 and 13.22 mg L?1 and 6.63 for sonication time, TiO2–NP–AC mass, initial Cr3+ and Cu2+ ions concentration and pH, respectively. The experimental equilibrium data fitting to Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption process and maximum adsorption capacity of 105.26 and 93.46 mg g?1 were obtained for Cu2+ and Cr3+ ions, respectively. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo second order and intraparticle diffusion models.  相似文献   

15.
This study is aimed to highlight the possibility of engineering the multifunctional textile nanocomposite material based on the polyester (PES) fabric modified with colloidal Ag and TiO2 nanoparticles (NPs). The effects of concentration of NPs as well as the order of Ag and TiO2 NPs loading on antimicrobial, UV protective, and photocatalytic properties of PES fabrics were examined. The antimicrobial activity of differently modified PES fabrics was tested against Gram‐negative bacterium Escherichia coli, Gram‐positive bacterium Staphylococcus aureus, and fungus Candida albicans. The concentration of Ag colloid and the order of Ag and TiO2 NPs loading considerably affected the antimicrobial efficiency of PES fabrics. The fabrics provided maximum UV protection upon surface modification with Ag and TiO2 NPs. Ag NPs enhanced Ag NPs enhanced the photodegradation activity of TiO2 NPs and total photodegradation of methylene blue was achieved after 24 hr of UV illumination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this contribution, we reported an investigation of the morphologies, surface hydrophobicity, and shape memory properties of the organic–inorganic polyurethanes with double decker silsesquioxane (DDSQ) in the main chains. It was found that the organic–inorganic polyurethanes were microphase‐separated and that the POSS cages in the main chains were self‐organized into the spherical microdomains with the size of 10–50 nm in diameter. The introduction of POSS cages into the main chains resulted in the enhancement of glass transition temperatures (Tg's). In the meantime, the surface dewettability of the materials was significantly enhanced. X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) indicates the improvement of the surface hydrophobicity resulted from the enrichment of POSS at the surfaces of the polyurethanes. The mechanical analyses, such as dynamic mechanical analysis (DMA) and creep‐recovery analysis (CRA), indicate that the POSS microdomains dispersed in the polyurethanes behaved as the physical crosslinking sites and promoted the formation of the crosslinked networks. Owing to the introduction of DDSQ into the main chains, the organic–inorganic polyurethanes significantly displayed shape memory properties, in marked contrast to the unmodified and linear polyurethane. The shape memory behavior has been addressed on the formation of the strong physically crosslinked networks in the organic–inorganic polyurethanes. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 893–906  相似文献   

17.
Nitrogen‐doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N‐doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface‐bonded N species, whereas the core remains N doped. N‐Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible‐light irradiation. The surface‐oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N‐doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N‐doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible‐light‐driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N‐doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N‐doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.  相似文献   

18.
The present paper describes an unconventional approach to fabricate the superhydrophilic–superhydrophobic micropatterns on the TiO2 nanotube structured film by photocatalytic lithography with a two-step process. At the first step, the superhydrophobic TiO2 nanotube film is fabricated through electrochemical and self-assembled techniques. And at the second step, the superhydrophobic film is selectively exposed to UV light through a photomask to locally photocatalyse the organic monolayer assembled on the TiO2 nanotube surface. The superhydrophilic–superhydrophobic micropatterns have thus been developed, as a novel template to fabricate a define micropatterned coating of nano octacalcium phosphate by electrochemical deposition. It is indicated that these combined processes reveal a very promising approach for constructing well-defined micropatterns of various functional materials.  相似文献   

19.
It is challenging to study the single semiconductor nanocrystal electrochemistry and photoelectrochemistry. The photocatalytic processes, such as the oxidation of methanol and iodide, that result from the electron–hole pair formed within a nanoparticle (NP) allow the detection of discrete current transient events assigned to single entities. Photocatalytic current amplification allows detection of collisions between the semiconductor NPs and the ultramicroelectrode that produce current transient. Staircase responses and blips in the i vs. t response indicate that irreversible and reversible NP/electrode interactions result depending on the experimental conditions. Dye sensitization increases the photocurrent magnitude of ZnO and TiO2 with respect to bare TiO2 NPs. The microelectrodes used are Pt, TiO2/Pt, TiO2/Au, and F-doped SnO2.  相似文献   

20.
Porous TiO2 nanoparticles coated on ZnO nanowire arrays (TiO2 NP/ZnO NW) as photoanode for dye-sensitized solar cell (DSSC) has been fabricated and investigated to improve the power conversion efficiency. The TiO2 NP/ZnO NW photoanode consists of single crystalline ZnO NWs synthesized via hydrothermal method and porous TiO2 NP film covered on the surface of ZnO NW arrays by screen printing technique. The effect of TiO2 NPs thickness of the bi-filmed photoanode on the cell performance has been investigated, and TiO2 NP/ZnO NW DSSC with NP thickness of ~5 μm exhibits the best efficiency of 4.68%, higher than 1.16% of ZnO NW DSSC and 3.18% of TiO2 NPs DSSC, prepared and tested under identical conditions. The efficiency increase is attributed to the enlarged photocurrent, due to the greatly enhanced surface area for dye absorption and light harvesting efficiency resulted from TiO2 NPs, and improved open-circuit voltage, due to reduced electron recombination by providing direct conduction pathway along ZnO NWs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号