首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermomechanical properties of anion exchange polymers based on polysulfone (PSU) quaternized with trimethylamine (TMA) or 1,4‐diazabicyclo[2.2.2]octane (DABCO) and containing hydroxide or chloride anions by tensile stress–strain tests and dynamic mechanical analysis (DMA) have been determined. The reported mechanical properties included the Young's modulus, tensile strength, and elongation at break from tensile tests and the storage and loss modulus and glass transition temperature from DMA. The anion exchange membranes behaved as stiff polymers with Young's modulus in the order of 1 GPa, relatively with high strength (about 30 MPa) and low elongation at break (around 10%) was observed. Tensile tests were also made with membranes exchanged with hydrogen‐carbonate and carbonate anions to control the absence of important carbonation of the OH form. The glass transition temperatures were of the order of 150 °C (PSU‐TMA) or 200 °C (PSU‐DABCO) for the hydroxide form, confirmed by differential scanning calorimetry; they increase further by about 50 K, when hydroxide ions are replaced by chloride. This result and the increase of the storage modulus could be interpreted by the higher hydration of hydroxide ions and the plasticizing effect of water, which reduced the Van der Waals interactions between the macromolecular chains. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1180–1187  相似文献   

2.
Polyaniline (PANI) nanofibers were used to improve hydrophilic property and permeability of polysulfone (PS) membrane. PS membrane and PS/PANI nanofibers blended membranes with different PANI–PS mass ratios (1, 5, 10, and 15 wt.%) were prepared by phase inversion process. The blended membranes showed similar bovine serum albumin (BSA) and albumin egg (AE) rejections to PS membrane. The blended membranes had larger porosity and better hydrophilic property than PS membrane, which caused the improvement of their permeability. Pure water fluxes of the blended membranes with PANI–PS mass ratios of 1 and 15 wt.% were 1.6 and 2.4 times that of PS membrane, respectively. During the filtration of BSA solution, the blended membranes had slower flux decline rate than PS membrane. Moreover, stable permeate fluxes of the blended membranes with PANI–PS mass ratios of 1 and 15 wt.% were 2.0 and 2.5 times that of PS membrane, respectively. Compared with PS membrane, mechanical property and thermal stability of the blended membranes with less PANI–PS mass ratio, e.g. 1 wt.%, had no obvious change. For the blended membrane with PANI–PS mass ratio of 15 wt.%, breaking strength increased 28% and elongation at break decreased 30.6%.  相似文献   

3.
The mechanical properties of linear and V‐shaped compositional gradient copolymer of styrene and n‐butyl acrylate with composition of around 55 wt % styrene were investigated by comparing with their block copolymer counterparts. Compared with their block copolymer counterparts, the gradient copolymers showed lower elastic modulus, much larger elongation at break, and similar ultimate tensile strength at room temperature. This performance could be ascribed to that the local moduli continuously change from the hardest nanodomains to the softest nanodomains in the gradient copolymer, which alleviates the stress concentration during tensile test. Compared with the V‐shaped gradient (VG) copolymer, the linear gradient copolymer showed much higher elastic modulus but lower elongation at break. The mechanical properties of the gradient copolymers were more sensitive to the change in temperature from 9 °C to 75 °C. With recovery temperature increased from 10 °C to 60 °C, the strain recovery of VG copolymer would change steadily from 40% to 99%. However, the elastic recovery of linear and triblock copolymer was poor even at 60 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 860–868  相似文献   

4.
Epoxidized soybean oil (ESO) was blended as a novel plasticizer with polybutylene succinate (PBS) in a twin‐screw extruder. The effects of ESO on the mechanical and thermal properties of the PBS/ESO blends were investigated by means of tensile test, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscope. ESO improved elongation at break for PBS, which increased and then decreased with the increase in ESO. Elongation at break reached a maximum of 15 times than that for pure PBS when the ESO loading was 5 wt%. The tensile strength and modulus for the blends were lower than those for pure PBS. Compared with pure PBS, the blends exhibited lower glass transition temperature, crystallization temperature, and melting temperature. The storage modulus and tan δ peaks for the blends were lower compared with that for pure PBS. ESO had very limited compatibility with PBS, and phase separation was observed when more ESO was added. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
采用微波合成法, 调整己二酸和2,6-吡啶二甲酸2种二酸单体的配比, 使其与联苯四胺进行三元共聚, 制备出一系列新型含脂肪链结构的聚苯并咪唑(PBI)类质子交换膜, 并用红外光谱、 热重分析进行了表征, 对膜的吸水率、 溶胀率、 质子传导率、 机械强度及抗氧化性能等进行了测试. 当己二酸与2,6-吡啶二甲酸的摩尔比为3: 2时, 所制备的PBI-C2膜掺杂磷酸后在160℃下的质子传导率可达30 mS/cm, 拉伸强度在常温下可达77.54 MPa, 断裂伸长率为39.25%, 最大储能模量为9.0623 MPa, 最大损耗模量为8.36 MPa, 玻璃化转变温度为360℃, 芬顿试验192 h后膜的降解率仅为0.21%, 表明PBI-C2膜在高温质子交换膜燃料电池中具有较好的应用前景.  相似文献   

6.
In order to modify its physical properties, particularly the drawability and toughness, polylactide (PLA) was melt blended with a set of PEG-b-PPG-b-PEG block copolymers with varying ratio of the hydrophilic (PEG) and hydrophobic (PPG) blocks. Miscibility of the copolymers with PLA depended on their molar mass and PEG content. Interestingly, the best drawability was achieved in the case of partially miscible blends, in which fine liquid inclusions of the modifier were dispersed in PLA rich matrix with glass transition temperature only moderately decreased, to about 50 °C. About 37 fold increase of the elongation at break and about 1.5 fold increase of the tensile impact strength with respect to neat PLA were reached at small content (10 wt.%) of the modifier. Despite the phase separation, the blends remained transparent. In addition, the barrier properties for oxygen were improved.  相似文献   

7.
Colloidal silica nanoparticles (NPs) modified with eight different silane coupling agents were incorporated into an amorphous poly(tetramethylene oxide)‐based polyurethane–urea copolymer matrix at a concentration of 10 wt % (4.4 vol %) in order to investigate the effect of their surface chemistry on the structure–property behavior of the resulting nanocomposites. The rigid amorphous fraction (RAF) of the nanocomposite matrix as determined by differential scanning calorimetry and dynamic mechanical analysis was confirmed to vary significantly with the surface chemistry of the NPs and to be strongly correlated with the bulk mechanical properties in simple tension. Hence, nanocomposites with an RAF of about 30 wt % showed a 120% increase in Young's modulus, a 25% increase in tensile strength, a 15% decrease in elongation at break with respect to the neat matrix, which had no detectable RAF, whereas nanocomposites with an RAF of less than 5% showed a 60% increase in Young's modulus, a 10% increase in tensile strength and a 5% decrease in the elongation at break. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2543–2556  相似文献   

8.
《先进技术聚合物》2018,29(8):2287-2299
There is a huge demand especially for polyvinylidene fluoride (PVDF) and its copolymers to provide high performance solid polymer electrolytes for use as an electrolyte in energy supply systems. In this regard, the blending approach was used to prepare PVDF‐based proton exchange membranes and focused on the study of factor affecting the ir proton conductivity behavior. Thus, a series of copolymers consisting of poly (methyl methacrylate) (PMMA), polyacrylonitrile (PAN), and poly(2‐acrylamido‐2‐methyl‐l‐propanesulfonic acid) (PAMPS) as sulfonated segments were synthesized and blended with PVDF matrix in order to create proton transport sites in PVDF matrix. It was found that addition of PMMA‐co‐PAMPS and PAN‐co‐PAMPS copolymers resulted in a significant increase in porosity, which favored the water uptake and proton transport at ambient temperature. Furthermore, crystallinity degree of the PVDF‐based blend membranes was increased by addition of the related copolymers, which is mainly attributed to formation of hydrogen bonding interaction between PVDF matrix and the synthesized copolymers, and led to a slight decrease in proton conductivity behavior of blend membranes. From impedance data, the proton conductivity of the PVDF/PMMA‐co‐PAMPS and PVDF/PAN‐co‐PAMPS blend membranes increases to 10 and 8.4 mS cm−1 by adding only 50% of the related copolymer (at 25°C), respectively. Also, the blend membranes containing 30% sulfonated copolymers showed a power density as high as 34.30 and 30.10 mW cm−2 at peak current density of 140 and 79.45 mA cm−2 for the PVDF/PMMA‐co‐PAMPS and PVDF/PAN‐co‐PAMPS blend membranes, respectively. A reduction in the tensile strength was observed by the addition of amphiphilic copolymer, whereas the elongation at break of all blend membranes was raised.  相似文献   

9.
The effect of crystallinity of polylactide (PLA) on the structure and properties of tough PLA blends with PEG-b-PPG-b-PEG block copolymers was studied. PLA was melt blended with a set of the copolymers with varying ratio of the hydrophilic (PEG) and hydrophobic (PPG) blocks. Although the blend phase structure depended on the copolymer molar mass and PEG content, as well as on the copolymer concentration in the blend, crystallinity also played an important role, increasing the copolymer content in the amorphous phase and enhancing phase separation. The influence of crystallinity on the thermal and mechanical properties of the blends depended on the copolymer used and its content. The blends, with PLA crystallinity of 25 ÷ 34 wt%, exhibited relatively high glass transition temperature ranging from 45 to 52 °C, and melting beginning above 120 °C. Although with a few exceptions crystallinity worsened the drawability and toughness, these properties were improved with respect to neat crystalline PLA in the case of partially miscible blends, in which fine liquid inclusions of the modifier were dispersed in PLA rich matrix. About 20-fold increase of the elongation at break and about 4-fold increase of the tensile impact strength were reached at a small content (10 wt%) of the modifier. Moreover, crystallinity decreased oxygen and water vapor transmission rates through neat PLA and the blend, and the barrier property for oxygen of the latter was better than that of neat polymer.  相似文献   

10.
The polycaprolactone (PCL)/starch blends were prepared by using the starch‐g‐PCL (SGCL) graft copolymers as compatibilizers, and their mechanical properties were correlated with the compatibilizing effect of the SGCL copolymers having various molecular structures. The modulus and strength of the PCL/starch blend were decreased, whereas the percent elongation and the toughness were increased remarkably with the addition of SGCL having appropriate graft structure. These property changes were analyzed in terms of the PCL crystallinity and the interfacial adhesion between the PCL matrix and starch dispersion phases, which were dominated by the compatibilizing effects of the SGCL copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2430–2438, 1999  相似文献   

11.
Summary: Neutralization process effects on preparation and characterization of chitosan membranes were evaluated by differencial scanning calorimetry and scanning electron microscopy. Water solubility and humidity of chitosan membranes were also studied. Swelling behavior in different pH media was evaluated and mechanical properties such as tensile strength and elongation at break were measured. Neutralization process increased glass transition temperature of chitosan membranes and decreased their water solubility, humidity and water sorption. An improvement in mechanical properties of chitosan membranes was also observed after neutralization process.  相似文献   

12.
A series of poly(arylene ether sulfone)‐block‐sulfonated polybutadiene (PAES‐b‐sPB) with different ion exchange capacities (IECs) were synthesized and evaluated as proton exchange membranes (PEMs) for possible applications in fuel cells. These sulfonated block copolymers were synthesized via condensation reaction between modified PAES and PB prepolymers, followed by selective post‐sulfonation of PB blocks using acetyl sulfate as the sulfonating reagent. The sulfonic groups were only attached onto PB blocks due to the high reactivity of double bonds to acetyl sulfate. The success of synthesis and selective post‐sulfonation were all confirmed by the Fourier transform infrared (FT‐IR) and nuclear magnetic resonance (NMR) spectra. PAES‐b‐sPB had good film‐forming ability and thermal stability. Mechanical properties of membranes varied with the sulfonation. The presence of sulfonic groups increased the tensile strength and Young's modulus but decreased the elongation at break. Transmission electron microscopy (TEM) images showed large ionic aggregates in membranes. Phase separation as well as the interconnected sulfonate groups which only localized on flexible PB blocks led to these ionic domains. The proton conductivity increased with the increasing IEC and temperature. With relatively low IEC, most membranes still exhibited sufficient proton conductivity. The above results indicated this strategy could be a prospective choice to prepare novel PEMs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The properties and morphologies of UV‐cured epoxy acrylate (EB600) blend films containing hyperbranched polyurethane acrylate (HUA)/hyperbranched polyester (HPE) were investigated. A small amount of HUA added to EB600 improved both the tensile strength and elongation at break without damaging its storage modulus (E′). The highest tensile strength of 31.9 MPa and an elongation at break around two times that of cured pure EB600 were obtained for the EB600‐based film blended with 10% HUA. Its log E′ (MPa) value was measured to be 9.48, that is, about 98% of that of the cured EB600 film. The impact strength and critical stress intensity factor (K1c) of the blends were investigated. A 10 wt % HUA content led to a K1c value 1.75 times that of the neat EB600 resin, and the impact strength of the EB600/HPE blends increased from 0.84 to 0.95 kJ m?1 with only 5 wt % HPE addition. The toughening effects of HUA and HPE on EB600 were demonstrated by scanning electron microscopy photographs of the fracture surfaces of films. Moreover, for the toughening mechanism of HPE to EB600, it was suggested that the HPE particles, as a second phase in the cured EB600 film, were deformed in a cold drawing, which was caused by the difference between the elastic moduli of HPE and EB600. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3159–3170, 2005  相似文献   

14.
电纺聚乙烯醇超细纤维膜的性能研究   总被引:3,自引:0,他引:3  
由电纺制备聚乙烯醇(PVA)超细纤维膜,以扫描电镜观察纤维的微观形貌,用X射线衍射研究超细纤维膜的结晶行为,并测定了PVA超细纤维膜的力学性能和吸水性.结果表明,PVA超细纤维的平均直径为(184±26)nm,超细纤维中PVA的结晶度和晶体有序程度较浇铸膜低.超细纤维膜的拉伸强度、模量和断裂伸长率均较浇铸膜差,吸水率在300%以上,高于浇铸膜.  相似文献   

15.
《先进技术聚合物》2018,29(10):2619-2631
In the present work, development of neat and nanocomposite polyethersulfone membranes composed of TiO2 nanoparticles is presented. Membranes are fabricated using nonsolvent phase inversion process with the objective of improving antifouling, hydrophilicity, and mechanical properties for real and synthetic produced water treatment. Membranes are characterized using scanning electron microscopy, Fourier‐transform infrared, contact angle, porosity measurement, compaction factor, nanoparticles stability, and mechanical strength. The performance of prepared membranes was also characterized using flux measurement and oil rejection. Fourier‐transform infrared spectra indicated that noncovalence bond formed between Ti and polyethersulfone chains. The contact angle results confirmed the improved hydrophilicity of nanocomposite membranes upon addition of TiO2 nanoparticles owing to the strong interactions between fillers and water molecules. The increased water flux for nanocomposite membranes in comparison with neat ones can be due to coupling effects of improved surface hydrophilicity, higher porosity, and formation of macrovoids in the membrane structure. The membrane containing 7 wt% of TiO2 nanoparticles was the best nanocomposite membrane because of its high oil rejection, water flux, antifouling properties, and mechanical stability. The pure water flux for this membrane was twice greater than that of neat membrane without any loss in oil rejection. The hydrophilicity and antifouling resistance against oil nominates developed nanocomposite membranes for real and synthetic produced water treatment applications with high performance and extended life span.  相似文献   

16.
A thermoplastic, poly(ethersulfone) (PES) was used to modify a bisphenol‐F based epoxy resin cured with an aromatic diamine. The initial mixtures before curing, prepared by melt mixing, were homogeneous. Scanning electron microscopy (SEM) micrographs of solvent‐etched fracture surfaces of the cured blends indicated that phase separation occurred after curing. The cryogenic mechanical behaviors of the epoxy resins were studied in terms of tensile properties and Charpy impact strength at cryogenic temperature (77 K) and compared to their corresponding behaviors at room temperature (RT). The addition of PES generally improved the tensile strength, elongation at break, and impact strength at both RT and 77 K except the RT tensile strength at 25 phr PES content. It was interesting to observe that and the maximum values of the tensile strength, elongation at break, and impact strength occurred at 20 phr PES content where a co‐continuous phase formed. Young's modulus decreased slightly with the increase of the PES content. Moreover, the tensile strength and Young's modulus at 77 K were higher than those at RT at the same composition, whereas the elongation at break and impact strength showed the opposite results. Finally, the differential scanning calorimetry analysis showed that the glass transition temperature (Tg) was enhanced by the addition of PES. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 612–624, 2008  相似文献   

17.
In order to determine the influence of composition drift and copolymer microstructure on the mechanical bulk properties of styrene -methyl acrylate copolymers, several copolymers were produced by emulsion copolymerization. Three different average compositions were used. By performing the copolymerizations under batch and semicontinuous conditions with two different monomer addition strategies (starved conditions and optimal addition) it was possible to control composition drift and to produce copolymers with different microstructures (chemical composition distributions). All these copolymers were processed in a way that ensured that the original particle structure was lost before the polymers were tested. It was found that composition drift had an influence on the mechanical properties (Young's modulus, maximum stress, elongation at break). This influence could be understood very well on the basis of present knowledge about structure-mechanical properties relationships. In the case of homogeneous copolymers maximum stress and elongation at break are dependent on the molecular weight, and only weakly dependent on the chemical composition, and Young's modulus is independent of chemical composition and molecular weight in the range of compositions investigated, as expected. In the case of heterogeneous copolymers, the influence of copolymer microstructure on Young's modulus, maximum stress and elongation at break is very large. Depending on the extent of control of composition drift during the polymerizations, phase separation was observed in the processed polymers, and the presence of a rubber phase affected the properties profoundly.  相似文献   

18.
Poly(lactic acid)-based ternary blends consisting of poly(lactic acid)(PLA),cellulolytic enzyme lignin(CEL),and polyolefine grafting maleic anhydride(PGMA) were prepared by extrusion blending and the mechanical properties and the morphology of the ternary blends were investigated.It was found that the mechanical properties varied with various loading of the components in the blends.Compared to neat PLA,the tensile strength and the Young’s modulus of the ternary blends were decreased,but the elongation at break and the impact strength were effectively improved.Scanning electron microscope observations revealed that the CEL plays a bridging role between PLA and PGMA,enhancing the miscibility between them and resulting in the improvement of ductility and toughness of the ternary blends.Considering the cost and performance,we obtained the optimal blend PLA/CEL/ PGMA(80/20/20,w/w/w),of which the impact strength and the elongation at break were doubled as that of neat PLA,and the tensile strength remained moderate.  相似文献   

19.
《先进技术聚合物》2018,29(6):1603-1612
In this study, polystyrene (PS) was melt blended with different amounts of poly1‐hexene (PH) and poly(1‐hexene‐co‐hexadiene) (COPOLY) and the blends were compared with conventional PS/polybutadiene (PS/PB) one. Scanning electron microscope revealed that the dispersion of PH and COPOLY in PS matrix was more uniform with the appearance of small particles in PS matrix; however, in the case of PS/PB blends, the fracture surface showed nonhomogenous morphology with the appearance of bigger rubber particles. Based on Differential Scanning Calorimetry (DSC) and dynamic mechanical thermal analysis results, Tg of the blends decreased in comparison with it in neat PS. Impact strength of PS/PH and PS/COPOLY blends was considerably higher than that in PS/PB and significantly higher than the value for neat PS. Tensile test showed substantial improvement in stress at yield and better elongation at break for COPOLY containing blend than the samples containing PH and PB rubbers. Also, blending of PS with 10% of the rubbers was considered in the presence of dicumylperoxide as a probable grafting/cross‐linking agent to produce XPS/COPOLY10 and XPS/PB10 samples, respectively. IR results of the nonsoluble solvent extracted gel showed that COPOLY and PB were grafted to PS matrix during melt blending, which caused higher impact strength in the related samples.  相似文献   

20.
The ion exchange membrane using polysulfone (PSf) and polyether ether ketone (PEEK) as a basic material was prepared to apply in the polymer electrolyte membrane electrolysis (PEME). The sulfonated block copolymer of PSf and poly(phenylene sulfide sulfone) (SPSf-co-PPSS) and the sulfonated PEEK (SPEEK) were blended with tungstophosphoric acid (TPA) to avoid water swelling at elevated temperatures led to decrease in mechanical strength. These prepared ion exchange membranes showed some interesting characteristics including physicochemical stabilities, mechanical and membrane properties.The prepared ion exchange membrane was utilized to prepare the membrane electrode assembly (MEA). MEA consisted of Pt/PEM/Pt was prepared by equilibrium and non-equilibrium impregnation–reduction (I–R) methods. The prepared MEA by non-equilibrium I–R method was used in the PEME unit cell. The cell voltages of the MEA using SPSf-co-PPSS/TPA and SPEEK/TPA membranes were 1.83 V and 1.90 V at 1 A/cm2 and 80 °C, with platinum loadings of 1.12 and 1.01 mg/cm2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号