首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an alternative method for synthesizing magnetic cobalt adeninate metal–organic frameworks was developed, and the synthesized materials were examined for their potential application for separating and enriching benzodiazepines from complex samples. Benzodiazepines, widely used as hypnotics, muscle relaxants, sedatives, and anxiolytics, are a class of drugs that require accurate detection and monitoring. Results showed that Fe3O4 nanoparticles could be well anchored onto the external surface of cobalt adeninate metal–organic frameworks by using amino‐silane as a linkage. Their adsorption of benzodiazepines was mainly promoted by intermolecular hydrogen binding, π–π interactions and electrostatic attraction. Their potential application was evaluated by extraction of benzodiazepines in urine and wastewater samples prior to liquid chromatography with mass spectrometry. Under optimum conditions, the calibration curves were linear with a correlation coefficient of ≥0.9928 in the concentration range of 10–5000 ng/L for lorazepam and 5–5000 ng/L for estazolam, chlordiazepoxide, alprazolam, midazolam and triazolam. The limits of detection were in the range of 0.71–2.49 ng/L. The percent of extraction recoveries were 80.2–94.5% for urine and 84.1–94.4% for wastewater, respectively. Results suggested that magnetic cobalt adeninate metal–organic frameworks could potentially be a promising material for enriching benzodiazepines from urine and wastewater with high accuracy and precision.  相似文献   

2.
Magnetic separation technology was applied in the separation of flavonoids from the licorice root in this work. Licorice flavonoids (LF) displayed a remarkable array of biological and pharmacological activities. The magnetic adsorbents with functional -NH2 groups were synthesized by immobilization of amino-silane on the surface of the magnetic silica supports, which were prepared by co-precipitation method. The adsorption and desorption characteristics of the magnetic adsorbents for the separation of LF have been evaluated. The purity of an enriched extract with this method was 16.7% while the crude extract only had about 6.8% purity. Therefore, it can be concluded that these kinds of magnetic adsorbents have selectivity to the flavonoids to some extent. The affinity selectivity of the adsorbents is based on the formation of hydrogen bonding between the -NH2 on the magnetic adsorbents and -OH,-CO on the flavonoids.  相似文献   

3.
The structure and properties of the K{Ni[Au(CN)(2)](3)} coordination polymer, prepared as a powder at room temperature and recrystallized hydrothermally, are reported. The structure of K{Ni[Au(CN)(2)](3)} contains triply-interpenetrated Prussian Blue type pseudo-cubic arrays assembled from the alternation of octahedral Ni(II) centers and [Au(CN)(2)](-) bridging units. SQUID magnetometry studies have shown that K{Ni[Au(CN)(2)](3)} displays typical paramagnetic behavior for isolated Ni(II) centers down to 1.8 K. However, the magnetic behavior of the samples prepared under hydrothermal conditions suggests a superparamagnetic signature superimposed onto a paramagnetic background. After investigating the samples by transmission electron microscopy, it was determined that, in addition to K{Ni[Au(CN)(2)](3)}, the high-temperature (125, 135, and 165 degrees C) aqueous reaction of Ni(NO(3))(2)6 H(2)O with KAu(CN)(2) also led to the formation of nanoparticles of NiO and Au as minor side products, and that these dominated the magnetic behavior. Nanoparticles of various sizes and shapes were observed, depending on the reaction conditions. Samples containing nanoparticles were found to be superparamagnetic, exhibiting blocking temperatures of approximately 17-22 K, consistent with the behavior expected for NiO nanoparticles. These results illustrate the extreme care that must be taken when examining the physical properties of apparently analytically pure materials prepared by hydrothermal methods.  相似文献   

4.
A facile and efficient strategy is developed to modify aptamers on the surface of the magnetic metal‐organic framework MIL‐101 for the rapid magnetic solid‐phase extraction of ochratoxin A. To the best of our knowledge, this is the first attempt to create a robust aptamer‐modified magnetic MIL‐101 with covalent bonding for the magnetic separation and enrichment of ochratoxin A. The saturated adsorption of ochratoxin A by aptamer‐modified magnetic MIL‐101 was 7.9 times greater than that by magnetic metal‐organic framework MIL‐101 due to the former's high selective recognition as well as good stability. It could be used for extraction more than 12 times with no significant changes in the extraction efficiency. An aptamer‐modified magnetic MIL‐101‐based method of magnetic solid‐phase extraction combined with ultra high performance liquid chromatography with tandem mass spectrometry was developed for the determination of trace ochratoxin A with limit of detection of 0.067 ng/L. Ochratoxin A of 4.53–13.7 ng/kg was determined in corn and peanut samples. The recoveries were in the range 82.8–108% with a relative standard deviation (n = 5) of 4.5–6.5%. These results show that aptamer‐modified magnetic MIL‐101 exhibits selective and effective enrichment performance and have excellent potential for the analysis of ultra‐trace targets from complex matrices.  相似文献   

5.
In this work, 5, 10, 15, 20‐Tetra‐(4‐aminophenyl) porphyrin (TAPP) was used as gelator to prepare metal‐porphyrin porous coordination polymer (PCP) via solvothermal process, Soxhlet extraction and supercritical CO2 extraction. Firstly, the metal‐porphyrin organic gel (MOG) was prepared as intermediate with solvothermal method. The generation of gels is associated with many factors. When four acetates [Co(Ac)2?4H2O, Zn(Ac)2?2H2O, Mn(Ac)2?4H2O and Ni(Ac)2?7H2O] reacted with TAPP, only the reaction between Co(Ac)2?4H2O and TAPP could form desired metal‐porphyrin organic gel. The influences of solvent, concentration and anions were investigated in the gelation process. Secondly, the residual reactants and solvent molecules in MOG were removed through Soxhlet extraction and supercritical CO2 extraction. The Co‐PCP is an amorphous material with a hierarchical porous structure can effectively catalyze the oxidation of ethylbenzene and also exhibits a strong adsorptive capacity for the strong‐polar solvent molecules.  相似文献   

6.
A simple pH‐responsive magnetic solid‐phase extraction method was developed using graphene oxide–coated nanoscale zerovalent iron nanoparticles as an efficient adsorbent prior to high‐performance liquid chromatography‐tandem mass spectrometry for determination of ultra‐trace quinolones in milk samples. Various parameters affecting maghemite synthesis and separation such as pH of sample solution, amount of magnetic adsorbent, eluent type, and volume were optimized. The limits of detection are from 3.1 to 13.3 ng/L. The intra‐ and interprecision values are in the range of 2.9–6.9% and 7.6–15.1%, respectively. Recoveries are from 82.4 to 103.9%. Therefore, this simple and sensitive method is suitable for detecting ultra‐trace quinolone residues in milk.  相似文献   

7.
Metal–organic frameworks‐5 (MOF‐5) was explored as a template to prepare porous carbon due to its high surface area, large pore volume, and permanent nanoscale porosity. Magnetic porous carbon, Co@MOF‐5‐C, was fabricated by the one‐step direct carbonization of Co‐doped MOF‐5. After carbonization, the magnetic cobalt nanoparticles are well dispersed in the porous carbon matrix, and Co@MOF‐5‐C displays strong magnetism (with the saturation magnetization intensity of 70.17emu/g), high‐specific surface area, and large pore volume. To evaluate its extraction performance, the Co@MOF‐5‐C was applied as an adsorbent for the magnetic solid‐phase extraction of endocrine disrupting chemicals, followed by their analysis with high‐performance liquid chromatography. The developed method exhibits a good linear response in the range of 0.5–100 ng/mL for pond water and 1.0–100 ng/mL for juice samples. The limits of detection (S/N  = 3) for the analytes were in the range of 0.1–0.2 ng/mL.  相似文献   

8.
Two new isostructural iron(II) spin‐crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2(NCX)2] (dpms=4,4′‐dipyridylmethyl sulfide; X=S ( SCOF‐6(S) ), X=Se ( SCOF‐6(Se) )) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF‐6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high‐spin (HS) to low‐spin iron(II) sites over the temperature range 300–4 K (T1/2=75 K). In contrast, the NCSe? analogue, SCOF‐6(Se) , displays a complete SCO transition (T1/2=135 K). Photomagnetic characterizations reveal quantitative light‐ induced excited spin‐state trapping (LIESST) of metastable HS iron(II) sites at 10 K. The temperature at which the photoinduced stored information is erased is 58 and 50 K for SCOF‐6(S) and SCOF‐6(Se) , respectively. Variable‐pressure magnetic measurements were performed on SCOF‐6(S) , revealing that with increasing pressure both the T1/2 value and the extent of spin conversion are increased; with pressures exceeding 5.2 kbar a complete thermal transition is achieved. This study confirms that kinetic trapping effects are responsible for hindering a complete thermally induced spin transition in SCOF‐6(S) at ambient pressure due to an interplay between close T1/2 and T(LIESST) values.  相似文献   

9.
An open metal site framework named UTSA‐16 was synthesized and modified as a high‐capacity adsorbent for reversible CO2 capture. Partial substitution of intrinsic Co2+ sites of UTSA‐16 with Ni2+ centres was realized in the molar composition range 0–75% Ni with the aim of increasing CO2 uptake. Synthesized bimetallic Nix‐UTSA‐16 (x = 0, 20, 50, 75) materials were characterized using various techniques to assess the influence of chemical composition on CO2 binding affinity and any subsequent physical change in morphology, crystal size and porosity on the total uptake. Experimental isotherm adsorption studies showed the following trend for CO2 adsorption capacity employing the Nix‐UTSA‐16 series: Ni20‐UTSA‐16 > UTSA‐16 > Ni50‐UTSA‐16 > Ni75‐UTSA‐16. According to the dynamic breakthrough CO2 profiles measured for a mixture of CO2 and CH4 (15/85 molar ratio), Ni20‐UTSA‐16 exhibited 2 times the breakthrough time with 1.5 times the loading capacity at 75 Nml min?1 feed flow rate, compared to the parent UTSA‐16. In addition, the Ni20‐UTSA‐16 bimetallic metal–organic framework exhibited lower isosteric heat of adsorption compared to UTSA‐16 (ΔHave = 28.54 versus 46.85 kJ mol?1). As a result, more than 95% of its capacity was restored by applying a partial vacuum for only 1 h at room temperature without involving any other time‐ and energy‐consuming regenerative step.  相似文献   

10.
In this work, core‐shell structured magnetic mesoporous carbon nanospheres were fabricated from the carbonization of metal‐polyphenol coordination polymer‐coated Fe3O4 nanoparticles. The preparation method is simple, fast, versatile, and easy to scale up. Magnetic mesoporous carbon nanospheres exhibit a high specific surface area, high superparamagnetism, and high adsorption efficiencies for phthalates. Four phthalates were extracted from aqueous solutions by using magnetic mesoporous carbon nanospheres via magnetic solid phase extraction. Subsequent analysis was performed by using high‐performance liquid chromatography with ultraviolet detection. The analytical method has good linearity in the concentration range of 1–200 ng/mL for diethyl phthalate, diisobutyl phthalate, and dicyclohexyl phthalate, and 3–200 ng/mL for dipropyl phthalate. The limits of detection were in the range of 0.10–0.62 ng/mL. Compared with previous methods, this method has a lower detection limit, wider linearity range, and faster adsorption and desorption rates. The results indicate that magnetic mesoporous carbon nanospheres are suitable for the enrichment of hydrophobic substances from aqueous solutions.  相似文献   

11.
Two new coordination polymers (CPs) formed from 5‐iodobenzene‐1,3‐dicarboxylic acid (H2iip) in the presence of the flexible 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb) auxiliary ligand, namely poly[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ3‐5‐iodobenzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O3′)cobalt(II)], [Co(C8H3IO4)(C10H14N4)]n or [Co(iip)(bimb)]n, (1), and poly[[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ2‐5‐iodobenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] trihydrate], {[Zn(C8H3IO4)(C10H14N4)]·3H2O}n or {[Zn(iip)(bimb)]·3H2O}n, (2), were synthesized and characterized by FT–IR spectroscopy, thermogravimetric analysis (TGA), solid‐state UV–Vis spectroscopy, single‐crystal X‐ray diffraction analysis and powder X‐ray diffraction analysis (PXRD). The iip2− ligand in (1) adopts the (κ11‐μ2)(κ1, κ1‐μ1)‐μ3 coordination mode, linking adjacent secondary building units into a ladder‐like chain. These chains are further connected by the flexible bimb ligand in a transtranstrans conformation. As a result, a twofold three‐dimensional interpenetrating α‐Po network is formed. Complex (2) exhibits a two‐dimensional (4,4) topological network architecture in which the iip2− ligand shows the (κ1)(κ1)‐μ2 coordination mode. The solid‐state UV–Vis spectra of (1) and (2) were investigated, together with the fluorescence properties of (2) in the solid state.  相似文献   

12.
Magnetic separation technology was applied in the separation of flavonoids from the licorice root in this work. Licorice flavonoids (LF) displayed a remarkable array of biological and pharmacological activities. The magnetic adsorbents with functional —NH2 groups were synthesized by immobilization of amino-silane on the surface of the magnetic silica supports, which were prepared by co-precipitation method. The adsorption and desorption characteristics of the magnetic adsorbents for the separation of LF have been evaluated. The purity of an enriched extract with this method was 16.7% while the crude extract only had about 6.8% purity. Therefore, it can be concluded that these kinds of magnetic adsorbents have selectivity to the flavonoids to some extent. The affinity selectivity of the adsorbents is based on the formation of hydrogen bonding between the —NH2 on the magnetic adsorbents and —OH, —CO on the flavonoids. Supported by the National High Technology Research and Development Program of China (Grant No. 2002AA302211) and the National Science Fund for Creative Research Groups of China (Grant No. 20221603)  相似文献   

13.
A Hoffman‐like coordination polymer with appreciable porosity and uncoordinated pyridyl groups, namely, [Fe(2,5‐bpp){Au(CN)2}2] ? x Solv (2,5‐bpp=2,5‐bis(pyrid‐4‐yl)pyridine; Solv=solvent), was synthesised and characterised. A series of fascinating spin‐crossover behaviours with abrupt, stepwise and hysteretic features were obtained by exchange with a range of protic solvents (ethanol, n‐propanol, isopropyl alcohol, sec‐butanol and isobutanol). Guest–host hydrogen‐bonding interactions involving the H‐accepting site of the framework are primarily responsible for the pronounced cooperativity of these spin‐crossover behaviours. Meanwhile, the tunable critical temperatures over a range of about 130 K are presumably attributable to a certain degree of competition between internal pressure and local electronic influences of solvents.  相似文献   

14.
A Zr‐based metal–organic framework with bipyridine units (UiO‐67) has been utilized for the immobilization of catalytically active iron species via a post‐synthetic metalation method. UiO‐67 bipyridine MOF was synthesized through a simple solvothermal method and was shown to have a UiO‐type structure. Post‐synthetic metalation of UiO‐67 MOF was performed for the immobilization of the catalytically active FeCl3. FT‐IR and EDX element map suggested that FeCl3 is coordinately bonded to the UiO‐67 bipyridine framework. The synthesized UiO‐67‐FeCl3 catalyst was used for the aerobic oxidation of alcohols and benzylic compounds in the presence of molecular oxygen. In addition, the UiO‐67‐FeCl3 catalyst can be reused as a solid heterogeneous catalyst without compromising its activity and selectivity.  相似文献   

15.
Homo- and heterometallic 1D coordination polymers of transition metals (Co II, Mn II, Zn II) have been synthesized by an in-situ ligand generation route. Carboxylato-based complexes [Co(PhCOO)2]n (1 a, 1 b), [Co(p-MePhCOO)2]n (2), [ZnMn(PhCOO)4]n (3), and [CoZn(PhCOO)4]n (4) (PhCOOH=benzoic acid, p-MePhCOOH=p-methylbenzoic acid) have been characterized by chemical analysis, single-crystal X-ray diffraction, and magnetization measurements. The new complexes 2 and 3 crystallize in orthorhombic space groups Pnab and Pcab respectively. Their crystal structures consist of zigzag chains, with alternating M(II) centers in octahedral and tetrahedral positions, which are similar to those of 1 a and 1 b. Compound 4 crystallizes in monoclinic space group P2 1/c and comprises zigzag chains of M II ions in a tetrahedral coordination environment. Magnetic investigations reveal the existence of antiferromagnetic interactions between magnetic centers in the heterometallic complexes 3 and 4, while ferromagnetic interactions operate in homometallic compounds (1 a, 1 b, and 2). Compound 1 b orders ferromagnetically at TC=3.7 K whereas 1 a does not show any magnetic ordering down to 330 mK and displays typical single-chain magnet (SCM) behavior with slowing down of magnetization relaxation below 0.6 K. Single-crystal measurements reveal that the system is easily magnetized in the chain direction for 1 a whereas the chain direction coincides with the hard magnetic axis in 1 b. Despite important similarities, small differences in the molecular and crystal structures of these two compounds lead to this dramatic change in properties.  相似文献   

16.
17.
In this study, a magnetic metal–organic framework was synthesized simply and utilized in the dispersive magnetic solid‐phase extraction of five phthalate esters followed by their determination by gas chromatography with mass spectrometry. First, MIL‐101(Cr) was prepared hydrothermally in water medium without using highly corrosive hydrofluoric acid, utilizing an autoclave oven heat supply. Afterward, Fe3O4 nanoparticles were decorated into the matrix of MIL‐101(Cr) to fabricate magnetic MIL‐101 nanocomposite. The nanocomposite was characterized by various techniques. The parameters affecting dispersive magnetic solid‐phase extraction efficiency were optimized and obtained as: a sorbent amount of 15 mg; a sorption time of 20 min; an elution time of 5 min; NaCl concentration, 10% w/v; type and volume of the eluent 1 mL n‐hexane/acetone (1:1 v/v). Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 0.08–0.15 and 0.5–200 μg/L, respectively. The intra‐ and interday RSD% values were obtained in the range of 2.5–9.5 and 4.6–10.4, respectively. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of the model analytes in water samples, and human plasma in the range of microgram per liter and satisfactory results were obtained.  相似文献   

18.
Twelve coordination polymers with formula {Fe(3‐Xpy)2[MII(CN)4]} (MII: Ni, Pd, Pt; X: F, Cl, Br, I; py: pyridine) have been synthesised, and their crystal structures have been determined by single‐crystal or powder X‐ray analysis. All of the fluoro and iodo compounds, as well as the chloro derivative in which MII is Pt, crystallise in the monoclinic C2/m space group, whereas the rest of the chloro and all of the bromo derivatives crystallise in the orthorhombic Pnc2 space group. In all cases, the iron(II) atom resides in a pseudo‐octahedral [FeN6] coordination core, with similar bond lengths and angles in the various derivatives. The major difference between the two kinds of structure arises from the stacking of consecutive two‐dimensional {Fe(3‐Xpy)2[MII(CN)4]} layers, which allows different dispositions of the X atoms. The fluoro and chloro derivatives undergo cooperative spin crossover (SCO) with significant hysteretic behaviour, whereas the rest are paramagnetic. The thermal hysteresis, if X is F, shifts toward room temperature without changing the cooperativity as the pressure increases in the interval 105 Pa–0.5 GPa. At ambient pressure, the SCO phenomenon has been structurally characterised at different significant temperatures, and the corresponding thermodynamic parameters were obtained from DSC calorimetric measurements. Compound {Fe(3‐Clpy)2[Pd(CN)4]} represents a new example of a “re‐entrant” two‐step spin transition by showing the Pnma space group in the intermediate phase (IP) and the Pnc2 space group in the low‐spin (LS) and high‐spin (HS) phases.  相似文献   

19.
To date, the number of published reports on the large‐volume preparation of polymer‐based monolithic chromatography adsorbents is still lacking and is of great importance. Many critical factors need to be considered when manufacturing a large‐volume polymer‐based monolith for chromatographic applications. Structural integrity, validity, and repeatability are thought to be the key factors determining the usability of a large‐volume monolith in a separation process. In this review, we focus on problems and solutions pertaining to heat dissipation, pore size distribution, “wall channel” effect, and mechanical strength in monolith preparation. A template‐based method comprising sacrificial and nonsacrificial techniques is possibly the method of choice due to its precise control over the porous structure. However, additional expensive steps are usually required for the template removal. Other strategies in monolith preparation are also discussed.  相似文献   

20.
A new cyanide‐bridged FeIII–MnII heterobimetallic coordination polymer (CP), namely catena‐poly[[[N,N′‐(1,2‐phenylene)bis(pyridine‐2‐carboxamidato)‐κ4N,N′,N′′,N′′′]iron(III)]‐μ‐cyanido‐κ2C:N‐[bis(4,4′‐bipyridine‐κN)bis(methanol‐κO)manganese(II)]‐μ‐cyanido‐κ2N:C], {[FeMn(C18H12N4O2)(CN)2(C10H8N2)2(CH3OH)2]ClO4}n, ( 1 ), was prepared by the self‐assembly of the trans‐dicyanidoiron(III)‐containing building block [Fe(bpb)(CN)2]? [bpb2? = N,N′‐(1,2‐phenylene)bis(pyridine‐2‐carboxamidate)], [Mn(ClO4)2]·6H2O and 4,4′‐bipyridine, and was structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction analysis shows that CP 1 possesses a cationic linear chain structure consisting of alternating cyanide‐bridged Fe–Mn units, with free perchlorate as the charge‐balancing anion, which can be further extended into a two‐dimensional supramolecular sheet structure via inter‐chain π–π interactions between the 4,4′‐bipyridine ligands. Within the chain, each MnII ion is six‐coordinated by an N6 unit and is involved in a slightly distorted octahedral coordination geometry. Investigation of the magnetic properties of 1 reveals an antiferromagnetic coupling between the cyanide‐bridged FeIII and MnII ions. A best fit of the magnetic susceptibility based on the one‐dimensional alternating chain model leads to the magnetic coupling constants J1 = ?1.35 and J2 = ?1.05 cm?1, and the antiferromagnetic coupling was further confirmed by spin Hamiltonian‐based density functional theoretical (DFT) calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号