首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we designed and investigated pH‐responsive nanoparticles based on different ratios of monomers with primary, secondary or tertiary amino groups. For this purpose, copolymers of methyl methacrylate (MMA) with different compositions of amino methacrylates (2‐(dimethylamino)ethyl methacrylate (DMAEMA), 2‐(tert‐butylamino)ethyl methacrylate (tBAEMA) and 2‐aminoethyl methacrylate hydrochloride (AEMA·HCI)) were synthesized using the reversible addition‐fragmentation chain transfer (RAFT) polymerization process. The controlled nature of the radical polymerization was demonstrated by kinetic studies. All copolymers show low dispersities (?M < 1.2) with amino contents between 9 and 21 mol %. For the nanoparticle formation, nanoprecipitation with subsequent solvent evaporation was used. All suspensions were characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Different initial conditions of the formulations resulted in differently sized nanoparticles that have monomodal size distributions, relatively narrow polydispersity index (PDI) values and positive zeta potential values. The pH‐stability test results demonstrated that, depending on the structure and amount of the amino content, the obtained nanoparticles reveal a reversible pH‐response, such as dissolution at acidic pH values. The ability of the nanoparticles to encapsulate guest molecules was confirmed by pyrene fluorescence studies. The cytotoxicity assay results showed that the nanoparticles did not have any significant cytotoxic effect. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2711–2721  相似文献   

2.
In this research, thermo‐ and pH‐responsive nanoparticles with an average diameter of about 50–200 nm were synthesized via the surfactant‐free emulsion polymerization. The thermal/pH dual responsive properties of these nanoparticles were designed by the addition of a pH sensitive monomer, acrylic acid (AA), to be copolymerized with N‐isopropylacrylamide (NIPAAm) in a chitosan (CS) solution. The molar ratio of CS/AA/NIPAAm in the feed was changed to investigate its effect on structure, morphology, thermal‐ and pH‐responsive properties of the nanoparticles. It was found that CS‐PAA‐PNIPAAm nanoparticles could be well dispersed in the aqueous solution and carried positive charges on the surface. The addition of thermal‐sensitive NIPAAm monomer affected the polymerization mechanism and interactions between CS and AA. The particle size of the nanoparticles was found to be varied with the composition of NIPAAm monomer in the feed. The synthesized nanoparticles exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in vitro release experiment. The environmentally responsive nanoparticles are expected to be used in many fields such as drug delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2798–2810, 2009  相似文献   

3.
Organic/inorganic hybrid amphiphilic block copolymer poly(methacrylate isobutyl POSS)‐b‐poly(N‐isopropylacrylamide‐co‐oligo(ethylene glycol) methyl ether methacrylate) (PMAPOSS‐b‐P(NIPAM‐co‐OEGMA)) was synthesized via reversible addition–fragmentation chain transfer polymerization. The self‐assembly behavior of this block copolymer in aqueous solution was investigated by dynamic light scattering (DLS) and transmission electron microscopy. The results indicate that the novel block copolymer can self‐assemble into spherical micelles with PMAPOSS segment as the hydrophobic part and P(NIPAM‐co‐OEGMA) segment as the hydrophilic part. The temperature‐responsive characteristics of the assemblies were tested by UV–Vis spectra and DLS. Some factors such as the concentration, molecular weight, and copolymer generation that may affect the cloud point were studied systematically. The results reveal that this copolymer exhibits a sharp and intensive lower critical solution temperature (LCST). The essentially predetermined LCST can be conveniently achieved by adjusting the content of NIPAM or OEGMA domain. In addition, these novel hybrid micelles can undergo an association/disassociation cycle with the heating and cooling of solution and the degree of reversibility displaying a tremendous concentration dependence, as a novel organic/inorganic hybrid material with distinctive virtues can be potentially used in biological and medical fields, especially in drug nanocarriers for targeted therapy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this research, stimuli‐responsive porous/hollow nanoparticles were prepared by the self‐assembly method. First, chitosan‐graft‐poly(N‐isopropylacrylamide) (CS‐g‐PNIPAAm) copolymers were synthesized through polymerization of N‐isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using ceric ammounium nitrate as the initiator. Then, the CS‐g‐PNIPAAm copolymers were dissolved in the acetic acid aqueous solution and heated to 40 °C to induce their self‐assembly. After CS‐g‐PNIPAAm assembled to form micelles, a cross‐linking agent was used to reinforce the structure to form nanoparticles. The molecular weight of grafted PNIPAAm on CS chains was changed to investigate its effect on the structure, morphology, thermo‐, and pH‐responsive properties of the nanoparticles. TEM images showed that a porous or hollow structure in the interior of nanoparticles was developed, depending on the medium temperature. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing the pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in vitro release experiment. These porous/hollow particles with environmentally sensitive properties are expected to be used in hydrophilic drug delivery system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2377–2387, 2010  相似文献   

5.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

6.
In this research, thermo‐ and pH‐responsive chitosan‐based porous nanoparticles were prepared by the temperature‐dependent self assembly method. The chitosan‐graft‐poly(N‐isopropylacrylamide) (CS‐g‐PNIPAAm) copolymer solution was prepared through polymerization of N‐isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using cerium ammounium nitrate as the initiator. Then, CS‐g‐PNIPAAm solution was diluted by deionized water and heated to 40 °C for CS‐g‐PNIPAAm self‐assembly. After that, CS‐g‐PNIPAAm assembled to form micelles in which shell layer was CS. Crosslinking agent was used to reinforce the micelle structure to form nanoparticle. The molar ratio of CS/NIPAAm in the feed mixture was changed to investigate its effect on structure, morphology, thermal‐ and pH‐responsive properties of the nanoparticles. TEM images showed that a porous structure of nanoparticles was developed. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in‐vitro release experiment. These porous particles with environmentally sensitive properties are expected to be utilized in hydrophilic drug delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5126–5136, 2009  相似文献   

7.
We have prepared a solid phase for the extraction of chlorobenzenes (CBs) by coating magnetic (Fe3O4) nanoparticles with silica via a sol‐gel process using a mixture of tetraethoxysilane and triethoxyphenylsilane. The nanoparticles were characterized by SEM, energy‐dispersive spectroscopy, and X‐ray diffractometry. The nanoparticles were used for the extraction of 1,4‐dichlorobenzene (1,4‐DCB), 1,2,3‐trichlorobenzene (1,2,3‐TCB), 1,2,4‐trichlorobenzene (1,2,4‐TCB), and 1,2,3,4‐tetrachlorobenzene (1,2,3,4‐TeCB) from water, followed by their determination by GC‐electron capture detection. Under optimal conditions, enrichment factors ranging from 220 to 360 were obtained. All determination coefficients (r2) are >0.99, and linear response is found in range 0.025–1.5 μg/L (at the lower end), and 6–120 μg/L (at the higher end). Detection limits are 6, 10, 11, and 500 ng/L for 1,2,3,4‐TeCB, 1,2,4‐TCB, 1,2,3‐TCB, and 1,4‐DCB, respectively. All RSDs are <6% (for n = 5). The method was successfully applied to the determination of CBs in environmental water samples.  相似文献   

8.
The preparation of carboxylic acid‐coated silica nanoparticles was investigated. A monolayer of carboxylic acid residues with controllable graft density was anchored to the nanoparticle by a ring‐opening reaction with succinic anhydride. Poly(methacrylic acid) [poly(MAA)] grafted nanoparticles were prepared via a polymerization–deprotection strategy. Tert‐butyl methacrylate was polymerized from the surface of silica nanoparticles in a predictable manner and with excellent control over the molecular weight distribution. Subsequent removal of the tert‐butyl group resulted in poly (MAA) grafted nanoparticles. The polymer nanoparticles were also functionalized with dyes, which may be useful in tracking the particles in biological systems. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Polysulfone‐g‐poly(N‐isopropylacrylamide) (PSf‐g‐PNIPAAm) graft copolymers were prepared from atom transfer radical polymerization of NIPAAm using chloromethylated PSf as a macro‐initiator. The chain lengths of PNIPAAm of the graft copolymers were controllable with polymerization reaction time. The chemical structures of the graft copolymers were characterized with FTIR, NMR, and elemental analysis and their amphiphilic characteristics were examined and discussed. The PSf‐g‐PNIPAAm graft copolymers and the nanoparticles made from the graft copolymers exhibited repeatable temperature‐responsive properties in heating–cooling cycles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4756–4765, 2008  相似文献   

10.
New poly(ethylene oxide)‐based block copolymers (ssBCs) with a random copolymer block consisting of a reduction‐responsive disulfide‐labeled methacrylate (HMssEt) and a thermoresponsive di(ethylene glycol)‐containing methacrylate (MEO2MA) units were synthesized. The ratio of HMssEt/MEO2MA units in the random P(MEO2MA‐co‐HMssEt) copolymer block enables the characteristics of well‐defined ssBCs to be amphiphilic or thermoresponsive and double hydrophilic. Their amphiphilicity or temperature‐induced self‐assembly results in nanoaggregates with hydrophobic cores having different densities of pendant disulfide linkages. The effect of disulfide crosslinking density on morphological variation of disulfide‐crosslinked nanogels is investigated. In response to reductive reactions, the partial cleavage of pendant disulfide linkages in the hydrophobic cores converts the physically associated aggregates to disulfide‐crosslinked nanogels. The occurrence of in‐situ disulfide crosslinks provides colloidal stability upon dilution. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2057–2067  相似文献   

11.
Well‐defined H‐shaped pentablock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM), poly(N,N‐dimethylaminoethylacrylamide) (PDMAEMA), and poly(ethylene glycol) (PEG) with the chain architecture of (A/B)‐b‐C‐b‐(A/B) were synthesized by the combination of single‐electron‐transfer living radical polymerization, atom‐transfer radical polymerization, and click chemistry. Single‐electron‐transfer living radical polymerization of NIPAM using α,ω azide‐capped PEG macroinitiator resulted in PNIPAM‐b‐PEG‐b‐PNIPAM with azide groups at the block joints. Atom‐transfer radical polymerization of DMAEMA initiated by propargyl 2‐chloropropionate gave out α‐capped alkyne‐PDMAEMA. The H‐shaped copolymers were finally obtained by the click reaction between PNIPAM‐b‐PEG‐b‐PNIPAM and alkyne‐PDMAEMA. These copolymers were used to prepare stable colloidal gold nanoparticles (GNPs) in aqueous solution without any external reducing agent. The formation of GNPs was affected by the length of PDMAEMA block, the feed ratio of the copolymer to HAuCl4, and the pH value. The surface plasmon absorbance of these obtained GNPs also exhibited pH and thermal dependence because of the existence of PNIAPM and PDAMEMA blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
In this study, we report on the fabrication of tunable mixed‐charged copolymer brushes consisting of negatively charged carboxylic acid monomer (4‐vinylbenzoic acid, VBA) and positively charged quaternary amine monomer ((ar‐vinylbenzyl)trimethylammonium chloride) via reversible addition–fragmentation chain transfer‐mediated polymerization. The copolymer brushes have negative charge under neutral and basic conditions, and are positively charged under acidic conditions owing to the protonation of the carboxylate groups. The copolymer brushes revealed a unique reversible wetting behavior with pH. The reversible properties of the copolymer brushes can be employed to regulate the adsorption of charged biomacromolecules such as DNA and proteins. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Polymers with multiple tunable responses were achieved by incorporating boronic acid functionality along the backbone of a thermoresponsive polymer. The inherent Lewis acidity and diol‐sensitivity of boronic acid moieties allowed these polymers to respond to changes in pH and glucose concentration. Through reversible addition‐fragmentation chain transfer copolymerization of boronic acid‐containing monomers with N‐isopropylacrylamide, well‐defined block copolymers were synthesized containing a hydrophilic N,N‐dimethylacrylamide block and a second, responsive block with temperature‐dependent water solubility, making the resulting polymers capable of self‐assembly into nanostructures upon heating. By incorporating boronic acids within the thermoresponsive block, the cloud point of the polymer depended on the solution conditions, including pH and diol concentration, allowing tunable cloud point ranges. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2309–2317  相似文献   

14.
15.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

16.
A novel aromatic acetal‐based acid‐labile monomer 2‐phenyl‐5‐ethyl‐5‐acryloxymethyl‐1,3‐dioxacyclohexane (HEDPA) was synthesized and polymerized by reversible addition fragmentation chain transfer (RAFT) polymerization using alkynyl functional chain transfer agent (CTA‐Alk). Afterward, a series of amphiphilic diblock copolymers composed of fixed hydrophobic poly(2‐phenyl‐5‐ethyl‐5‐acryloxymethyl‐1,3‐dioxacyclohexane) (PDAEP) segments and various lengths of hydrophilic mPEG segments were prepared through click reaction between alkynyl‐terminated PDAEP and azido‐terminated mPEG. The self‐assembly behaviors of the diblock copolymers were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence spectroscopy, and 1H NMR. These results indicated that the diblock copolymers could self‐assemble into nano‐sized micelles with PDAEP cores and PEG coronas in aqueous solution. DLS, fluorescence spectroscopy and UV–vis spectroscopy were used to monitor the pH‐triggered assembly/disassembly transition of the micelles. These results showed that the assembly/disassembly transition behaviors of the diblock copolymers micelles can be adjusted by changing the lengths of the mPEG segments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1537–1547  相似文献   

17.
Gold nanoparticles (AuNPs) were synthesized by reduction of chloroauric acid (HAuCl4) aqueous solution with hydrazine monohydrate. The AuNPs were immediately treated with cysteamine to obtain amine‐functionalized nanoparticles (Au‐NH2). The reaction of Au‐NH2 with epichlorohydrin and subsequent treatment with sodium hydroxide gave epoxidized AuNPs (Au‐EP). Then, thiol‐capped AuNPs (Au‐SH) were synthesized by reaction of Au‐EP with cysteamine. A ‘grafting to’ approach was utilized to graft bromine‐terminated poly(N ,N ′‐dimethylaminoethyl methacrylate), synthesized via aqueous atom transfer radical polymerization, with various molecular weights (6280, 25 800, 64 200 and 87 600 g mol−1) onto Au‐SH to obtain Au‐P1, Au‐P2, Au‐P3 and Au‐P4 samples, respectively. All samples were exposed to temperature and pH variations, and Z‐average diameter was monitored using dynamic light scattering. According to the results, polymer‐grafted nanoparticles collapsed at lower temperatures with increasing solution pH for all molecular weight ranges due to deprotonation of tertiary amine groups. However, higher molecular weight polymers were more sensitive to pH variation especially in alkaline media. Also, a high degree of agglomeration was observed for Au‐P4 nanoparticles in alkaline media on increasing the temperature to 55 and 65 °C.  相似文献   

18.
Thermoresponsive double hydrophilic diblock copolymers poly(2‐(2′‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol) methacrylate)‐b‐poly(6‐O‐methacryloyl‐D ‐galactopyranose) (P(MEO2MA‐co‐OEGMA)‐b‐PMAGP) with various compositions and molecular weights were obtained by deprotection of amphiphilic diblock copolymers P(MEO2MA‐co‐OEGMA)‐b‐poly(6‐O‐methacryloyl‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose) (P(MEO2MA‐co‐OEGMA)‐b‐PMAlpGP), which were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization using P(MEO2MA‐co‐OEGMA) as macro‐RAFT agent. Dynamic light scattering and UV–vis studies showed that the micelles self‐assembled from P(MEO2MA‐co‐OEGMA)‐b‐PMAlpGP were thermoresponsive. A hydrophobic dye Nile Red could be encapsulated by block copolymers P(MEO2MA‐co‐OEGMA)‐b‐PMAGP upon micellization and released upon dissociation of the formed micelles under different temperatures. The galactose functional groups in the PMAGP block have specific interaction with HepG2 cells, and P(MEO2MA‐co‐OEGMA)‐b‐PMAGP has potential applications in hepatoma‐targeting drug delivery and biodetection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
In this article, magnetite nanoparticles (MNPs) coated with glycopolymer bearing glucose moieties were designed with optimal structural, colloidal, and magnetic properties for biomedical applications. MNPs with an average size of 17 ± 2 nm were synthesized by thermal decomposition process and then their surfaces were modified with active vinyl groups. Two different monomers were immobilized onto the surfaces: dopamine methacrylamide, a monomer with properties inspired on mussels adhesive capacity, or unprotected glycomonomer, 2‐{[(D ‐glucosamin‐2N‐yl)carbonyl]‐oxy}ethyl methacrylate. Afterward, the glycomonomer were polymerized at the interface of both vinyl functionalized MNPs by conventional radical polymerization. The resultant hybrid NPs were water dispersible presenting good stability in aqueous solution for long time periods. Moreover, the high density of carbohydrates at the surface of the magnetic NPs could confer targeting properties to the system as demonstrated by studies of their binding interactions with lectins, where the binding activity is higher as the glycopolymer content augments. The magnetic and magneto‐thermal properties of the synthesized hybrid NPs were evaluated. The magnetization curves reveal superparamagnetic features at 300 K, with high values of saturation magnetization. Furthermore, the hybrid glycoparticles show suitable heat dissipation power when exposed to alternating magnetic field conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Water‐soluble crosslinked hollow nanoparticles were prepared using pH‐responsive anionic polymer micelles as templates. The template micelles were formed from pH‐responsive diblock copolymers (PAMPS‐PAaH) composed of the poly(sodium 2‐(acrylamido)‐2‐methylpropanesulfonate) and poly(6‐(acrylamido)hexanoic acid) blocks in an aqueous acidic solution. The PAMPS and PAaH blocks form a hydrophilic anionic shell and hydrophobic core of the core‐shell polymer micelle, respectively. A cationic diblock copolymer (PEG‐P(APTAC/CEA)) with the poly(ethylene glycol) block and random copolymer block composed of poly((3‐acrylamidopropyl)trimethylammonium chloride) containing a small amount of the 2‐(cinnamoyl)ethylacrylate photo‐crosslinkable unit can be adsorbed to the anionic shell of the template micelle due to electrostatic interaction, which form a core‐shell‐corona three‐layered micelle. The shell of the core‐shell‐corona micelle is formed from a polyion complex with anionic PAMPS and cationic P(APTAC/CEA) chains. The P(APTAC/CEA) chains in the shell of the core‐shell‐corona micelle can be photo‐crosslinked with UV irradiation. The template micelle can be dissociated using NaOH, because the PAaH blocks are ionized. Furthermore, electrostatic interactions between PAMPS and PAPTAC in the shell are screened by adding excess NaCl in water. The template micelles can be completely removed by dialysis against water containing NaOH and NaCl to prepare the crosslinked hollow nanoparticles. Transmission electron microscopy observations confirmed the hollow structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号