首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We utilized ultra‐high performance liquid chromatography with tandem mass spectrometry and dispersive solid‐phase extraction to develop a new method for the detection of nine analytes (scopolamine, cephaeline, strychnine, hyoscyamine, brucine, hydrastine, ajmalicine, colchicine, and oleandrin) in herbal cosmetics. Acetonitrile/water and 2‐propylaminoethylamine were used to disperse and purify during the dispersive solid‐phase extraction step. The analytes were separated by a Waters UPLC HSS T3 column and detected through electrospray ionization source in the positive mode with multi‐reaction monitoring conditions. Under the optimal conditions, the calibration curves were linear in the range of 0.2–100.0 μg/L with the correlation coefficients higher than 0.995. The method limit of quantitation (S/N = 10) were 5.0 μg/kg for oleandrin and 1.0 μg/kg for the other eight alkaloids. The mean recoveries at three spiked concentration levels of 1.0–10.0 μg/kg were in the range of 86.9–116.5% with the intra‐day relative standard deviations (n  = 6) ranging from 2.4 to 8.8%, and inter‐day relative standard deviations ranging from 2.7 to 5.7%. This method is accurate, simple and rapid, and has been applied to the quality supervision of herbal cosmetics in Guangzhou.  相似文献   

2.
Phthalimide can be formed from either the degradation of folpet and phosmet, or reaction of phthalic anhydride with primary amino groups. Consequently, the sum of phthalimide and folpet, expressed as folpet‐residue definition, is highly prone to false‐positive levels of folpet in tea. An analytical method is thus urgently needed to investigate the residue level and source of phthalimide in tea. In this work, we developed an accurate method of determining phthalimide and phthalic acid (the indicator of phthalic anhydride) by acetonitrile extraction and 3‐bromopropyltrimethylammonium bromide derivatization coupled with ultra high performance liquid chromatography and high‐resolution mass spectrometry. The method was validated, and linearity (correlation coefficients > 0.99) was obtained. Satisfactory recoveries at 10, 20, 50, and 100 μg/kg ranged from 76 to 117%, and the intra‐ and interday accuracies were <23%. The limit of quantification for phthalimide and phthalic acid was 10 μg/kg. The developed method was further successfully used to determine phthalimide and phthalic acid in some tea samples. The positive rate of phthalimide and phthalic acid detected in the tea samples ranged from 30–75 and 50–90%, respectively.  相似文献   

3.
An RP LC‐ESI‐MS/MS method for the determination of the migration of 16 primary phthalic acid esters from plastic samples has been developed using distilled water, 3% acetic acid, 10% alcohol, and olive oil as food simulants. Detection limits were 1.6–18.5 μg/kg in distilled water, 1.4–17.3 μg/kg in 3% acetic acid, 1.4–19.2 μg/kg in 10% alcohol, and 31.9–390.8 μg/kg in olive oil. The RSDs were in the range of 0.07–11.28%. The real plastic products inspection showed that only few analyzed samples were phthalates contaminated. Bis‐2‐ethylhexyl ester and dibutyl phthalate were the common items migrated from the plastic products into food and feeds, but the migration concentrations were far below the limits set by European Union (1.5 mg/kg for bis‐2‐ethylhexyl ester and 0.3 mg/kg for dibutyl phthalate).  相似文献   

4.
Ginger, a widely used spice and traditional Chinese medicine, is prone to be contaminated by mycotoxins. A simple, sensitive, and reproducible method based on immunoaffinity column clean‐up coupled with HPLC and on‐line postcolumn photochemical derivatization with fluorescence detection was developed for the simultaneous determination of aflatoxins (AFs) B1, B2, G1, G2, and ochratoxin A (OTA) in 25 batches of gingers and related products marketed in China for the first time. The samples were first extracted by ultrasonication with methanol/water (80:20, v/v) and then cleaned up with immunoaffinity columns for analysis. Under the optimized conditions, the LODs and LOQs for the five mycotoxins were 0.03–0.3 and 0.1–0.9 μg/kg, respectively. The average recoveries ranged from 81.3–100.8% for AFs and from 88.6–99.5% for OTA at three spiking levels. Good linearity was observed for the analytes with correlation coefficients all >0.9995. All moldy gingers were contaminated with at least one kind of the five investigated mycotoxins, while none of them were found in normal gingers. Ginger powder samples were contaminated slightly with the contamination levels below the LOQs, while ginger tea bags were mainly contaminated by OTA at 1.05–1.19 μg/kg and ginger black tea bags were mainly contaminated by AFs at 3.37–5.76 μg/kg. All the contamination levels were below the legally allowable limits.  相似文献   

5.
The quantity of soil fumigants has increased globally that has focused attention on their environmental behavior. However, simultaneous analysis of traces of fumigant residues is often unreported because analysis methods are not readily available to measure them at low concentrations. In this study, typical solvent extraction methods were compared with headspace solid‐phase microextraction methods. Both methods can be used for simultaneously measuring the concentrations of five commonly used soil fumigants in soil or water. The solvent extraction method showed acceptable recovery (76–103%) and intraday relative standard deviations (0.8–11%) for the five soil fumigants. The headspace solid‐phase microextraction method also showed acceptable recovery (72–104%) and precision rates (1.3–17%) for the five soil fumigants. The solvent extraction method was more precise and more suitable for analyzing relatively high fumigant residue levels (0.05–5 μg/g) contained in multiple soil samples. The headspace solid‐phase microextraction method, however, had a much lower limits of detection (0.09–2.52 μg/kg or μg/L) than the solvent extraction method (5.8–29.2 μg/kg), making headspace solid‐phase microextraction most suitable for trace analysis of these fumigants. The results confirmed that the headspace solid‐phase microextraction method was more convenient and sensitive for the determination of fumigants to real soil samples.  相似文献   

6.
A simple and rapid dispersive liquid–liquid microextraction method coupled with gas chromatography and mass spectrometry was applied for the determination of glyoxal as quinoxaline, methylglyoxal as 2‐methylquinoxaline, and diacetyl as 2,3‐dimethylquinoxaline in red ginseng products. The performance of the proposed method was evaluated under optimum extraction conditions (extraction solvent: chloroform 100 μL, disperser solvent: methanol 200 μL, derivatizing agent concentration: 5 g/L, reaction time: 1 h, and no addition of salt). The limit of detection and limit of quantitation were 1.30 and 4.33 μg/L for glyoxal, 1.86 and 6.20 μg/L for methylglyoxal, and 1.45 and 4.82 μg/L for diacetyl. The intra‐ and interday relative standard deviations were <4.95 and 5.80%, respectively. The relative recoveries were 92.4–103.9% in red ginseng concentrate and 99.4–110.7% in juice samples. Red ginseng concentrates were found to contain 191–4274 μg/kg of glyoxal, 1336–4798 μg/kg of methylglyoxal, and 0–830 μg/kg of diacetyl, whereas for red ginseng juices, the respective concentrations were 72–865, 69–3613, and 6–344 μg/L.  相似文献   

7.
H. X. Chen  Y. Chen  P. Du  F. M. Han 《Chromatographia》2007,65(7-8):413-418
In-vivo and in-vitro metabolism of atropine has been investigated by use of a highly specific and sensitive LC–MS n method. Feces, urine, and plasma samples were collected separately after ingestion of 25 mg kg−1 atropine by healthy rats. Rat feces and urine samples were cleaned by liquid–liquid extraction and by solid-phase extraction (on C18 cartridges), respectively. Methanol was added to rat plasma samples to precipitate plasma proteins. Atropine was incubated, in vitro, with homogenized liver and with intestinal flora from rats. The metabolites in the incubation solution were extracted with ethyl acetate. These pretreated samples were then analyzed by reversed-phase high-performance liquid chromatography on a C18 column with methanol–ammonium acetate (2 mm, adjusted to pH 3.5 with formic acid), 70:30 (v/v), as mobile phase. Detection was by on-line MS n . Identification and elucidation of the structure of the metabolites were achieved by comparing molecular mass (ΔM), retention-times, and full-scan MS n spectra with those of the parent drug. Ten new metabolites (aponoratropine, apoatropine, hydroxymethoxyatropine, trihydroxyatropine, dimethoxyatropine, dihydroxymethoxyatropine, hydroxydimethoxyatropine, trihydroxymethoxyatropine, dihydroxydimethoxyatropine, and tropic acid) were identified in rat urine after ingestion of atropine. Nine metabolites (nortropine, tropine, aponoratropine, apoatropine, noratropine, hydroxyatropine, hydroxyatropine N-oxide, hydroxymethoxyatropine, and tropic acid) and the parent drug were detected in rat feces. Five metabolites (nortropine, tropine, tropic acid, apoatropine, and hydroxyatropine) and the parent drug were detected in rat plasma. Only two metabolites (apoatropine and noratropine) were detected in the homogenized liver incubation mixture. The hydrolyzed metabolites (tropine and tropic acid) and dehydrated metabolite apoatropine were found in the rat intestinal flora incubation mixture.  相似文献   

8.
Wheatgrass is consumed as an important nutritious herbal food supplement across the globe; however, limited studies have been reported analyzing multiclass pesticides in this complex, nutrient-rich natural product. An analytical method was developed for the estimation of 241 pesticides in random wheatgrass samples collected from Delhi Northern Capital Region (Delhi-NCR). Extraction was performed by QuEChERS, cleaning was performed by dispersive solid-phase extraction and the extracts were analyzed using triple quadrupole liquid chromatography mass spectrometry. The limit of quantification was 0.5 μg/kg, which is well below the European Union Maximum Residue Level. The coefficient of determination was >0.991 across a calibration range of 0.5–100 μg/kg. The relative standard deviation values for 231 pesticides based on 10 replicates of samples spiked at 10 μg/kg were <5%. Among random samples, 54% confirmed the presence of at least one pesticide. The results indicated the presence of eight different pesticides among 38% of the total population with metribuzin at 299.7 μg/kg and carfentrazone-ethyl at 19.47 μg/kg exceeding the permissible limits among 6% of the total estimated population. The chronic and acute risk quotients as calculated were <1, indicating nonsignificant dietary risk to consumers. However, the presence of pesticides above the permissible limit is likely to result in adverse health effects to the consumers of herbal supplements from an urban population and incorporating measures would be useful to ensure the quality and safety of wheatgrass consumption.  相似文献   

9.
A dispersive solid‐phase extraction coupled with ultra high performance liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of T‐2 toxin, penicillic acid, fumonisins B1, B2, and B3, aflatoxins B1, B2, G1, and G2, ochratoxin A, deoxynivalenol, 3‐acetyldeoxynivalenol, 15‐acetyldeoxynivalenol, and zearalenone in chestnut samples. The method was used to analyze 136 samples obtained from Shandong province in China. The mycotoxins were extracted using a dispersive solid‐phase extraction method and cleaned using an improved quick, easy, cheap, effective, rugged, and safe approach. The mycotoxins were then detected using a triple‐quadrupole mass spectrometer. The limits of detection and quantification ranged from 0.02 to 1 and 0.1 to 2 μg/kg, respectively. The recovery rates ranged from 74.2 to 109.5%, with relative standard deviations below 15%. A total of 71 samples were contaminated with seven mycotoxins at concentrations ranging from 1.2 to 105.5 μg/kg, with a number of samples exceeding the maximum limits set in the European regulations for mycotoxins in unprocessed chestnuts.  相似文献   

10.
We report the fabrication of an anion‐exchange monolithic column in a stainless‐steel chromatographic column (10 mm × 2.1 mm i.d.) using [2‐(acryloyloxy) ethyl]trimethylammonium chloride as the monomer and ethylene dimethacrylate as the crosslinker. The prepared monolith was developed as the adsorbent for the on‐line solid‐phase extraction of salicylic acid in various animal‐origin foodstuffs combined with liquid chromatography and tandem mass spectrometry. The monolith was characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, nitrogen adsorption analysis, and elemental analysis. Potential factors affecting the on‐line solid‐phase extraction and liquid chromatography with tandem mass spectrometry analysis were studied in detail. Under the optimized conditions, the total analysis time including cleanup and liquid chromatography with tandem mass spectrometry separation was 17 min. The developed method gave the linear range of 15–750 μg/kg, detection limits (S/N = 3) of 5 μg/kg, and quantification limits (S/N = 10) of 15 μg/kg. The recoveries obtained by spiking 10, 20, and 100 μg/kg of salicylic acid in the animal‐origin food samples were in the range of 85.2–98.4%. In addition, the monolith was stable enough for 550 extraction cycles with the precision of peak area ≤11.6%.  相似文献   

11.
In this work, a method for the analysis of benzoylurea insecticides, including hexaflumuron, flufenoxuron, lufenuron and chlorfluazuron, in tea samples by high‐performance liquid chromatography with Fe3O4‐hyperbranched polyester nanocomposite as the adsorbent for magnetic solid‐phase extraction was developed. The magnetic nanocomposite was prepared and characterized by infrared spectroscopy, vibrating sample magnetometry, and scanning electron microscopy. The as‐prepared nanocomposite was used as a sorbent for the extraction and preconcentration of pesticide residues in tea samples. The extraction and desorption conditions, including mass ratios of raw materials, amount of sorbent, pH value, extraction time, and desorption time, were investigated. Under the final conditions chosen for the analysis, good linearity was obtained for all the tested compounds, with R2 values of at least 0.9979. The limits of detection were determined in the range of 0.15–0.3 μg/L. The recovery obtained from the analysis of tea samples with various spiked concentrations was between 90.7 and 98.4%, with relative standard deviations (n = 4) lower than 4.1%. Furthermore, the present approach was successfully applied to the quantitative determination of residues of benzoylurea insecticides in real samples.  相似文献   

12.
Pyrrolizidine alkaloids (PAs) are a large class of natural compounds amongst which the esterified 1,2-unsaturated necine base is toxic for humans and livestock. In the present study, a method was developed and validated for the screening and quantification of nine PAs and one PA N-oxide in teas (Camellia sinensis (L.) O. Kuntze) and herbal teas (camomile, fennel, linden, mint, rooibos, verbena). Samples were analysed by HPLC on a RP-column, packed with sub-2 μm core-shell particles, and quantified using tandem mass spectrometry operating in the positive electrospray ionisation mode. These PAs and some of their isomers were detected in a majority of the analysed beverages (50/70 samples). In 24 samples, PA concentrations were above the limit of quantification and the sum of the nine targeted PAs was between 0.021 and 0.954 μg per cup of tea. Thus, in some cases, total concentrations exceed the maximum daily intake recommended by the German Federal Institute for Risk Assessment and the UK’s Committee On Toxicity (i.e. 0.007 μg kg?1 bw). Graphical Abstract
?  相似文献   

13.
An accelerated solvent extraction coupled with gas chromatography‐tandem mass spectrometry (ASE‐GC‐MS/MS) method for detecting dinitolmide residue and its metabolite (3‐amino‐2‐methyl‐5‐nitrobenzamide, 3‐ANOT) in eggs was developed and optimized. The samples were extracted using ASE with acetonitrile as the extractant and were purified by passage through a neutral alumina solid‐phase extraction column. Then, the samples were analyzed using the GC‐MS/MS method. The optimized method parameters were validated according to the requirements set forth by the European Union and the Food and Drug Administration. The average recoveries of dinitolmide and 3‐ANOT from eggs (egg white, egg yolk, and whole egg) at the limit of quantification (LOQ), 0.5 maximum residue limit (MRL), 1 MRL, and 2 MRL were 82.74% to 87.49%, the relative standard deviations (RSDs) were less than 4.63%, and the intra‐day RSDs and the inter‐day RSDs were 2.96% to 5.21% and 3.94% to 6.34%, respectively. The limits of detection and the LOQ were 0.8 to 2.8 μg/kg and 3.0 to 10.0 μg/kg, respectively. The decision limits (CCα) were 3001.69 to 3006.48 μg/kg, and the detection capabilities (CCβ) were 3001.74 to 3005.22 μg/kg. Finally, the new method was successfully applied to the quantitative determination of dinitolmide and 3‐ANOT in 50 commercial eggs from local supermarkets.  相似文献   

14.
A novel, simple, and reliable method based on high‐performance liquid chromatography coupled with fluorescence detection has been developed for the determination of nosiheptide in feed. The feed samples were extracted with acetonitrile 0.1% formic acid aqueous solution and then purified via a dispersive solid‐phase extraction procedure using silica gel powder as the sorbent. Using a mixture of acetonitrile and 5 mM ammonium acetate solution (containing 0.1% formic acid) as the mobile phase, good separation and peak shape were obtained for nosiheptide on a Poroshell C8 column (250 × 4.6 mm id, 4 μm) via the isocratic elution program. The resulting calibration curve shows high levels of linearity (r> 0.999) for nosiheptide concentrations of 50–1000 μg/L. At three spiked levels, i.e., 0.500, 2.50 and 5.00 mg/kg, the intra‐ and interday recoveries of nosiheptide in five types of feed ranged from 78.5–96.8 and 84.9–94.2%, respectively. The intra‐ and interday relative standard deviations were less than 10.8%. The limits of quantification for nosiheptide in complete feed and premixes were measured as 50 and 100 μg/kg, respectively. Compared with other common adsorbents, silica gel presents stronger recovery and purification results for feed samples during the dispersive solid‐phase extraction process.  相似文献   

15.
The detection frequencies of tefuryltrione, a new type of 4‐hydroxyphenyl‐pyruvate dioxygenase inhibitor herbicide, are rarely reported, probably because of the paucity of analytical methods. Herein, an effective and sensitive analytical method has been developed to detect tefuryltrione in vegetables (tomato and cucumber), cereals (rice and corn), soil, and water by ultra high performance liquid chromatography coupled with tandem mass spectrometry. Comparisons of the performances of dispersive solid‐phase extraction and multiplug filtration cleanup methods were carried out for tefuryltrione in complex matrices. Extraction solvents and purification sorbents were further optimized for dispersive solid‐phase extraction. Tefuryltrione was analyzed with electrospray ionization in the positive mode within 2.0 min. Mean recoveries for tefuryltrione were 75.4–108.9% with relative standard deviations less than 11.0% at three fortification levels (10, 100, 500 μg/kg) in the sample matrixes. Limits of quantification ranged from 0.70 to 5.12 μg/kg, and an excellent linearity (R 2 ≥ 0.9902) was obtained for tefuryltrione at concentrations of 5–1000 μg/L. The results showed that the developed dispersive solid‐phase extraction method could serve as an effective, sensitive, and robust method for routine monitoring of tefuryltrione residue in plants and environmental samples.  相似文献   

16.
In this study, an effective speed‐regulated directly suspended droplet microextraction method was developed to condense pesticide residues from teas through dispersive solid‐phase extraction prior to analysis by gas chromatography with tandem mass spectrometry. The extractant was intentionally dispersed into the sample solution in the form of globules through high‐speed agitation. This procedure increases the contact area between the binary phases and shortens the distribution equilibrium time. The fine globules reassembled by decelerating stirring speed, the extractant could be taken out for gas chromatography with tandem mass spectrometry. Recovery studies were performed under optimized extraction conditions by using matrix blanks fortified with pesticides at three concentrations (10, 50, and 100 µg/kg). Over 87% of the recoveries for the analytes in four tea matrices were acceptable given their recovery ranges of 70–120% and relative standard deviations of ≤20%. The limits of quantification of most pesticides were lower than 10 µg/kg and thus satisfied the requirements for maximum residue levels prescribed by the European Community. A total of 38 tea samples from local markets were analyzed by using the proposed method. Results showed that chlorpyrifos was the most frequently detected pesticide in teas. The method is a potential choice for the routine monitoring of pesticide residues in complex matrices.  相似文献   

17.
In this study, a borate hyper-crosslinked polymer was synthesized by crosslinking 1-naphthalene boric acid and dimethoxymethane via the Friedel-Crafts reaction. The prepared polymer exhibits excellent adsorption performance toward alkaloids and polyphenols with maximum adsorption capacities ranging from 25.07 to 39.60 mg/g. Adsorption kinetics and isotherms model results indicated the adsorption was a monolayer and chemical process. Under the optimal extraction conditions, a sensitive method was established for the simultaneous quantification of alkaloids and polyphenols in green tea and Coptis chinensis by coupling with the proposed sorbent and ultra-high performance liquid chromatography detection. The proposed method exhibited a wide linear range of 5.0–5000.0 ng/ml with R2 ≥ 0.99, a low limit of detection (0.66–11.25 ng/ml), and satisfactory recoveries (81.2%–117.4%). This work provides a simple and convenient candidate for the sensitive determination of alkaloids and polyphenols in green tea and complex herbal products.  相似文献   

18.
An analytical approach using a modified quick, easy, cheap, effective, rugged, and safe extraction method followed by liquid chromatography with electrospray ionization tandem mass spectrometry was developed herein for the determination of artesunate and its metabolite, dihydroarteminsinin in porcine muscle, egg, eel, flatfish, and shrimp. 10% trichloroacetic acid in acetonitrile mixed with ethyl acetate was used as an extraction solvent. To obtain a good separation, a Phenomenex Kinetex reversed‐phase analytical column was selected with mobile phase consisting of distilled water (A) and acetonitrile (B), both containing 0.05% formic acid. Good linearity was achieved using matrix‐matched calibrations constructed from six concentrations (5–50 μg/kg) with determinant coefficients ≥0.9918. Recoveries estimated from three spiking concentrations (5, 10, and 20 μg/kg) ranged between 71.3 and 104.7% in all matrixes with relative standard deviations ≤8.3%. A variety of samples purchased from markets in Seoul were tested following the protocol described herein. The artesunate and dihydroarteminsinin were not detected in any matrix. The methodology proposed could be used for routine determination of artesunate and its metabolite, dihydroartemisinin in various animal products having variable percentages of fat and protein.  相似文献   

19.
A facile and sensitive multi‐residue detection approach of pressurized liquid extraction following high‐performance liquid chromatography tandem mass spectrometry was established to detect the residues of adrenergic drugs, steroids, sedative, colorant and antioxidant in feed. The conditions employed for pressurized liquid extraction involved acetonitrile/ethyl acetate (1:1, v/v) as the extracting solvent, the temperature 80°C, two cycles and a static time of 10 min. The extraction was followed by a solid‐phase extraction clean‐up step. The separation of samples was done by C18 column with the mobile phase of 5 mM ammonium acetate solution and acetonitrile with 0.1% formic acid. The limits of quantification ranged from 0.03 to 1 μg/kg, limits of detection were in a range of 0.01–0.5 μg/kg, and average recoveries were 70.4–98.6%. The pressurized liquid extraction procedure was optimized and overall method was validated in terms of sensitivity, linearity, selectivity, matrix effect, accuracy, recovery and stability of the target drugs in the pressurized liquid extraction extracts solution. The screening method was proved to be fast, selective, accurate and sensitive for screening drugs.  相似文献   

20.
An ultra high‐performance liquid chromatography with tandem triple quadrupole mass spectrometry residue method was developed and validated for the quantification and identification of dinotefuran and its main metabolites 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) urea and 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) guanidine in fruit (watermelon), vegetable (cucumber), cereal (rice), animal‐derived foods (milk, egg, and pork), soil, and water. The samples were extracted with acetonitrile containing 15% v/v acetic acid and purified with dispersive solid‐phase extraction with octadecylsilane, primary secondary amine, graphitized carbon black, or zirconia‐coated silica prior to analysis. The method had an excellent linearity (R2 ≥ 0.9942, 1–500 μg/L) and satisfactory recoveries (73–102%) at five spiked levels (0.001, 0.01, 0.05, 0.5, and 2 mg/kg) with intra‐ or interday precision in the range of 0.8–9.5% and 3.0–12.8% for the three compounds in the eight matrices. The limits of quantification were 10 μg/kg for 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) guanidine and 1 μg/kg for 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) urea and dinotefuran. The applicability of the developed method was demonstrated by determining the occurrence of dinotefuran, 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) guanidine, and 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) urea in various samples from plants, animal‐derived foods, and the environment. From 80 samples, 70 contained dinotefuran (0.8–11.7 μg/kg), among which six also contained 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) urea (water and rice, 0.5–0.9 μg/kg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号