首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this study, preparation of Sn doped (0–30 mol % Sn) TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process have been investigated. The effects of Sn content on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), field emission SEM (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). Surface topography and surface chemical state of thin films were examined by atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the Sn dopant. The prepared Sn-doped TiO2 photo-catalyst films showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of methylene blue solution under UV irradiation. The result shows that doping an appropriate amount of Sn can effectively improve the photo-catalytic activity of TiO2 thin films, and the optimum dopant amount is found to be 15 mol%. The Sn4+ dopants substituted Ti4+ in the lattice of TiO2 and increased surface oxygen vacancies and the surface hydroxyl groups. TEM results showed small increase in planar spacing (was detected by HR-TEM caused by Sn dopants in titania based crystals).  相似文献   

2.
CuSn thin films were deposited by the radio‐frequency (RF) magnetron co‐sputtering method on Si(100) with Cu and Sn metal targets with various RF powers. The thickness of the films was fixed at 200 ± 10 nm. The synthesized CuSn thin films mainly consisted of Cu20Sn6 and Cu39Sn11 phases, which was revealed by an X‐ray diffraction (XRD) study. The high‐resolution Cu 2p XPS and Cu LMM Auger electron spectra indicate that metallic Cu oxidized to Cu+ and Cu2+ as the RF power on Cu target increased. The atomic ratios of Sn0 and Sn4+ decreased, while that of Sn2+ increased with increasing RF power on the Cu target. The polar surface free energy (SFE) component has a different tendency in comparison with the total SFE and the dispersive SFE component. The dispersive SFE component was the dominating contributing factor to the total SFE compared with the polar SFE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The thin films of TiO2 doped by Sn or Nb were prepared by sol–gel method under process control. The effects of Sn and Nb doping on the structural, optical and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD) high resolution transmission electron microscopy and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methylene blue under UV and Visible radiation. The results show that the photocatalytic activity of the Sn-doped TiO2 thin film have a larger degradation efficiency than Nb-doped TiO2 under visible light, but under UV light photocatalytic activity of the Nb-doped TiO2 thin film is better.  相似文献   

4.
Highly‐ordered Fe‐doped TiO2 nanotubes (TiO2nts) were fabricated by anodization of co‐sputtered Ti–Fe thin films in a glycerol electrolyte containing NH4F. The as‐sputtered Ti–Fe thin films correspond to a solid solution of Ti and Fe according to X‐ray diffraction. The Fe‐doped TiO2nts were studied in terms of composition, morphology and structure. The characterization included scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, UV/Vis spectroscopy, X‐ray photoelectron spectroscopy and Mott–Schottky analysis. As a result of the Fe doping, an indirect bandgap of 3.0 eV was estimated using Tauc’s plot, and this substantial red‐shift extends its photoresponse to visible light. From the Mott–Schottky analysis, the flat‐band potential (Efb) and the charge carrier concentration (ND) were determined to be ?0.95 V vs Ag/AgCl and 5.0 ×1019 cm?3 respectively for the Fe‐doped TiO2nts, whilst for the undoped TiO2nts, Efb of ?0.85 V vs Ag/AgCl and ND of 6.5×1019 cm?3 were obtained.  相似文献   

5.
In this study, preparation of Sn and Nb co-doped TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process have been investigated. The effects of co-doping content on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD), field emission SEM (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy (XPS). XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania Rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The prepared co-doped TiO2 photo-catalyst films showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of methylene blue (MB) solution under solar irradiation. Comparison with undoped and Sn or Nb-doped TiO2, codoped TiO2 shows an obviously higher catalytic activity under solar irradiation.  相似文献   

6.
Using ionic source assistant, Ti and N co‐doped amorphous C (α‐C:N:Ti) thin films were prepared by pulse cathode arc technique. Microstructure, composition, elemental distribution, morphology, and mechanical properties of α‐C:N:Ti films were investigated in dependence of nitrogen source, pulse frequency, and target current by Raman spectroscopy, X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, nanoindentation, and surface profilometer. The results show the presence of titanium carbide and nitride in a‐C:N:Ti films. The α‐C:N+:Ti film (6 Hz, 60 A) shows the smaller size and the higher disordering degree of Csp2 clusters. The α‐C:N+:Ti films present smoother surface and smaller particle size than for α‐C:N2:Ti films. N ions facilitate the formation of N‐sp3C bonds in the α‐C:N+:Ti films, and α‐C:N+:Ti (10 Hz, 80 A) film possesses the more graphite‐like N bonds. Higher hardness and lower residual stress present in the α‐C:N2:Ti (10 Hz, 80 A) film.  相似文献   

7.
The present work deals with the deposition of NiO and Nitrogen (N)-doped NiO thin films by sol-gel spin coating technique. Structural, morphological, linear and non-linear optical characteristics of undoped and N-doped (1–15 wt%) NiO films were studied. From XRD measurements, it is evident that single phase nano crystalline NiO is formed for all doping concentrations. Surface morphology study shows that higher concentration of N doped NiO thin films were of high quality and EDX mapping confirmed the doping of Nitrogen in films. The Raman spectra of the studied films were analyzed over the range of 1400-200 cm−1. The optical studies confirm that as doping increases, transparency of the film decreases (except at 10% N doping) and the band gap narrows. Nonlinear parameters such as refractive index and susceptibilities also depend on N dopant concentration. Z-scan studies viz., absorption index, nonlinear refractive index were carried out on undoped and N doped NiO samples and the results were matched with theoretical calculated values.  相似文献   

8.
吴晓宏  ab  王松a  郭云b  谢朝阳b  韩璐a  姜兆华a 《中国化学》2008,26(10):1939-1943
在染料敏化太阳能电池中,TiO2膜和敏化剂决定着电池的总体效率和机械性能。本文以4-甲基吡啶为原料,经过偶联、氧化、配位和配体交换反应合成了cis-RuL2(SCN)2, (L=2,2’-联吡啶-4,4’-二羧酸),通过溶胶-凝胶法制备了TiO2膜。为了提高TiO2膜的光电性能,将不同浓度的La(NO3)3 (0.1%、0.3%、0.5%和0.7%) 加入到溶胶中,采用cis-RuL2(SCN)2将掺杂前后的TiO2膜进行敏化。利用X射线衍射仪、原子力显微镜和X射线光电子能谱对所得薄膜进行结构表征。结果表明,当La离子的浓度为0.5%时,太阳能电池的效率最高,短路电流和开路电压比未掺杂的分别提高了0.54 mA/cm2和30.41 mV。  相似文献   

9.
TiO2 thin films with various Mo concentrations have been deposited on glass and n‐type silicon (100) substrates by this radio‐frequency (RF) reactive magnetron sputtering at 400°C substrate temperature. The crystal structure, surface morphology, composition, and elemental oxidation states of the films have been analyzed by using X‐ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy, respectively. Ultraviolet‐visible spectroscopy has been used to investigate the degradation, transmittance, and absorption properties of doped and undoped TiO2 films. The photocatalytic degradation activity of the films was evaluated by using methylene blue under a light intensity of 100 mW cm−2. The X‐ray diffraction patterns show the presence of anatase phase of TiO2 in the developed films. X‐ray photoelectron spectroscopy studies have confirmed that Mo is present only as Mo6+ ions in all films. The Mo/TiO2 band gap decreases from ~3.3 to 3.1 eV with increasing Mo dopant concentrations. Dye degradation of ~60% is observed in Mo/TiO2 samples, which is much higher than that of pure TiO2.  相似文献   

10.
We present a study of electrical and optical properties of nitrogen‐doped tin oxide thin films deposited on glass by the DC Magnetron Sputtering method. The deposition conditions to obtain p‐type thin films were a relative partial pressure between 7% and 11% (N2 and/or O2), a total working pressure of 1.8 mTorr and a plasma power of 30 W. The deposited thin films were oxidized after annealing at 250°C for 30 minutes. X‐ray diffraction results showed that the as‐deposited thin films exhibit a Sn tetragonal structure, and after annealing, they showed SnO tetragonal structure. X‐ray photoelectron spectroscopy results showed the presence of nitrogen in the samples before and after annealing. The measured physical parameters of the thin films were optical band gap between 1.92 and 2.68 eV, resistivity between 0.52 and 5.46 Ωcm, a concentration of p‐type carriers between 1018 and 1019 cm?3, and a Hall mobility between 0.1 and 1.94 cm2V?1s?1. These thin films were used to fabricate p‐type thin film transistors.  相似文献   

11.
Thin films of Al doped ZnO (Al:ZnO) were deposited on two substrates (Si and glass) at room temperature and 300°C using DC magnetron sputtering. These films were bombarded with 50 keV H+ beam at several fluences. The pristine and ion beam irradiated films were analysed by X‐ray diffraction, Raman spectroscopy, scanning electron microscopy, and UV‐Vis spectroscopy. The X‐ray diffraction analysis, Hall measurements, Raman and UV‐Vis spectroscopy confirm that the structural and transport properties of Al:ZnO films do not change substantially with beam irradiation at chosen fluences. However, in comparison to film deposited at room temperature, the Al:ZnO thin film deposited at 300°C shows increased transmittance (from 70% to approximately 90%) with ion beam irradiation at highest fluence. The studies of surface morphology by scanning electron microscopy reveal that the ion irradiation yields smoothening of the films, which also increases with ion fluences. The films deposited at elevated temperature are smoother than those deposited at room temperature. In the paper, we discuss the interaction of 50 keV H+ ions with Al:ZnO films in terms of radiation stability in devices.  相似文献   

12.
《Solid State Sciences》2012,14(6):705-710
Transparent conducting undoped and tin doped ZnO multilayer films were deposited by sol-gel method. Effect of open air annealing on different parameters like grain size, carrier density, band gap, resistivity, refractive index and extinction coefficient were investigated. Films were deposited on glass and silicon substrate by keeping doping concentration 4 at%. It was observed that tin doping reduces resistivity from 194.6 Ω cm to 3.11 Ω cm. Optical transmission spectra exhibit transmittance above 88% in visible range. Maximum carrier density of 11.9 × 1018 cm−3 and band gap of 3.24 eV was estimated at 375 °C. Scanning Electron Microscopy showed homogenous worm like morphology. Atomic force microscopy revealed pyramid shaped nanostructure of tin doped ZnO.  相似文献   

13.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, Ga‐doped ZnO thin films were prepared using sol–gel technique via spin‐coating method. The effect of Ga‐doping dopant (0, 1, 2 and 3 at.%) on microstructural, optical, electrical and photoelectrochemical (PEC) characteristics have been investigated. The spin‐coating was repeated six times, and as‐obtained thin films were then annealed at 500 °C for 1 h in vacuum. After annealing, all samples revealed single phase of hexagonal ZnO polycrystalline structure with a main peak of (002) in X‐ray diffraction (XRD) pattern. Raman spectra show that the vibration strength of E2 is highly decreased by Ga doping. Thicknesses of all samples were ~300 nm measured via scanning electron microscopy (SEM) cross‐section images and alpha‐step. The optical band gap and resistivity of samples were in the range of 3.24 to 3.28 eV and 102 to 9 Ohm cm, respectively. Resulting from PEC response, the 2 at.% Ga‐doped ZnO thin film has a better PEC performance with photocurrent density of ~0.14 mA/cm2 at 0.5 V versus saturated calomel electrode (SCE) under illumination with the intensity of 100 mW/cm2. This value was about seven times higher than the un‐doped film (reference sample). Observed higher photocurrent density was likely because of a suitable Ga‐doping concentration causing a lower resistivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Sol–gel spin-coating was used to grow zinc oxide (ZnO) thin films doped with 0–2.5 at.% B on quartz substrates. The structural, optical, and electrical properties of the thin films were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), ultraviolet–visible spectroscopy, and van der Pauw Hall-effect measurements. All the thin films had deposited well onto the quartz substrates and exhibited granular morphology. The average crystallite size, lattice constants, residual stress, and lengths of the bonds in the crystal lattice of the thin films were calculated from the XRD data. The PL spectra showed near-band-edge (NBE) and deep-level emissions, and B doping varied the PL properties and increased the efficiency of the NBE emission. The optical transmittance spectra for the undoped ZnO and boron-doped zinc oxide (BZO) thin films show that the optical transmittance of the BZO thin films was significantly higher than that of the undoped ZnO thin films in the visible region of the spectra and that the absorption edge of the BZO thin films was blue-shifted. In addition, doping the ZnO thin films with B significantly varied the absorption coefficient, optical band gap, Urbach energy, refractive index, extinction coefficient, single-oscillator energy, dispersion energy, average oscillator strength, average oscillator wavelength, dielectric constant, and optical conductivity of the BZO thin films. The Hall-effect data suggested that B doping also improved the electrical properties such as the carrier concentration, mobility, and resistivity of the thin films.  相似文献   

16.
Ag doped ZrO2 thin films were deposited on quartz substrates by sol–gel dip coating technique. The effect of Ag doping on tetragonal to monoclinic phase transformation of ZrO2 at a lower temperature (500 °C) was investigated by X-ray diffraction. It is found that the Ag doping promotes the phase transformation. The phase transformation can be attributed to the increase in the tetragonal grain size and concentration of oxygen vacancies in the presence of the Ag dopant. Accumulation of the Ag atoms at the film surface and surface morphology changes in the films were observed by AFM as a function of varying Ag concentration. X-ray photoelectron spectroscopy gave Ag 3d and O 1s spectra on Ag doped thin film. The chemical states of Ag have been identified as the monovalent state of Ag+ ions in ZrO2. The Ag doped ZrO2 thin films demonstrated the tailoring of band gap values. It is also found that the intensity of room temperature photoluminescence spectra is suppressed with Ag doping.  相似文献   

17.
Photocatalytic degradation of glyphosate contaminated in water was investigated. The N‐doped SnO2/TiO2 films were prepared via sol–gel method, and coated on glass fibers by dipping method. The effects of nitrogen doping on coating morphology, physical properties and glyphosate degradation rates were experimentally determined. Main variable was the concentration of nitrogen doping in range 0–40 mol%. Nitrogen doping results in shifting the absorption wavelengths and narrowing the band gap energy those lead to enhancement of photocatalytic performance. The near optimal 20N/SnO2/TiO2 composite thin film exhibited about two‐ and four‐folds of glyphosate degradation rates compared to the undoped SnO2/TiO2 and TiO2 films when photocatalytic treatment were performed under UV and solar irradiations, respectively, due to its narrowest band gap energy (optical absorption wavelength shifting to visible light region) and smallest crystallite size influenced by N‐doping.  相似文献   

18.
Gold‐induced (Au‐) crystallization of amorphous germanium (α‐Ge) thin films was investigated by depositing Ge on aluminum‐doped zinc oxide and glass substrates through electron beam evaporation at room temperature. The influence of the postannealing temperatures on the structural properties of the Ge thin films was investigated by employing Raman spectra, X‐ray diffraction, and scanning electron microscopy. The Raman and X‐ray diffraction results indicated that the Au‐induced crystallization of the Ge films yielded crystallization at temperature as low as 300°C for 1 hour. The amount of crystallization fraction and the film quality were improved with increasing the postannealing temperatures. The scanning electron microscopy images show that Au clusters are found on the front surface of the Ge films after the films were annealed at 500°C for 1 hour. This suggests that Au atoms move toward the surface of Ge film during annealing. The effects of annealing temperatures on the electrical conductivity of Ge films were investigated through current‐voltage measurements. The room temperature conductivity was estimated as 0.54 and 0.73 Scm−1 for annealed samples grown on aluminum‐doped zinc oxide and glass substrates, respectively. These findings could be very useful to realize inexpensive Ge‐based electronic and photovoltaic applications.  相似文献   

19.
We report the influence of 100 keV H+ ion beam irradiation on the surface morphology, crystalline structure, and transport properties of as‐deposited Al‐doped ZnO (Al:ZnO) thin films. The films were deposited on silicon (Si) substrate by using DC sputtering technique. The ion irradiation was carried out at various fluences ranging from 1.0 × 1012 to 3.0 × 1014 ions/cm2. The virgin and ion‐irradiated films were characterized by X‐ray diffraction, Raman spectroscopy, atomic force microscopy, and Hall probe measurements. Using X‐ray diffraction spectra, 5 points Williamson‐Hall plots were drawn to deduce the crystallite site and strain in Al:ZnO films. The analysis of the measurements shows that the films are almost radiation resistant in the structural deformation under chosen irradiation conditions. With beam irradiation, the transport properties of the films are also preserved (do not vary orders of magnitude). However, the surface roughness and the crystallite size, which are crucial parameters of the ZnO film as a gas sensor, are at variation with the ion fluence. As ion fluence increases, the root‐mean‐square surface roughness oscillates and the surface undergoes for smoothening with irradiation at chosen highest fluence. The crystallite size decreases initially, increases for intermediate fluences, and drops almost to the value of the pristine film at highest fluence. In the paper, these interesting experimental results are discussed in correlations with ion‐matter interactions especially energy losses by the ion beam in the material.  相似文献   

20.
In this study, the photocatalytic dye degradation efficiency of KTi0.5Te1.5O6 synthesized through solid‐state method was enhanced by cation (Ag+/Sn+2) doping at potassium site via ion exchange method. As prepared materials were characterized by XRD, SEM‐EDS, IR, TGA and UV–Vis Diffuse reflectance spectroscopic (DRS) techniques. All the compounds were crystallized in cubic lattice with space group. The bandgap energies of parent, Ag+‐ and Sn+2‐doped KTi0.5Te1.5O6 materials obtained from DRS profiles were found to be 2.96, 2.55 and 2.40 eV, respectively. Photocatalytic efficiency of parent, Ag+‐ and Sn+2‐doped materials was evaluated against the degradation of methylene blue (MB) and methyl violet (MV) dyes under visible light irradiation. The Sn+2‐doped KTi0.5Te1.5O6 showed higher activity toward the degradation of both MB and MV dyes and its higher activity is ascribed to the lower bandgap energy compared to the parent and Ag+‐doped KTi0.5Te1.5O6. The mechanistic degradation pathway of methylene blue (MB) was studied in the presence of Sn2+‐doped KTi0.5Te1.5O6. Quenching experiments were performed to know the participation of holes, super oxide and hydroxyl radicals in the dye degradation process. The stability and reusability of the catalysts were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号