首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Nateglinide loaded alginate-chitosan beads were prepared by ionic gelation method for controlling the drug release by using various combinations of chitosan and Ca2+ as cation and alginate as anion. IR spectrometry, scanning electron microscopy, differential scanning calorimetry and X-ray powder diffractometry were used to investigate the physicochemical characteristics of the drug in the bead formulations. The calcium content in beads was determined by atomic absorption spectroscopy. The swelling ability of the beads in different media (pH 1.2, 4.5, 6.8) has been found to be dependent on the presence of polyelectrolyte complex of the beads and the pH of the media. The ability to release the Nateglinide was examined as a function of chitosan and calcium chloride content in the gelation medium. It is evident that the rate of drug release and its kinetics could be controlled by changing the chitosan and the calcium chloride concentrations. Calcium alginate beads released more than 95% of drug with in 8 h; whereas coated beads sustained the drug release and released only 75-80% of drug. The drug release mechanism analyzed indicates that the release follows either "anomalous transport" or "case-II transport".  相似文献   

2.
In order to obtain dual‐stimuli‐responsive (temperature/pH) alginate beads that exhibit LCST close to human body temperature for sustained drug release applications, poly (NIPAAm‐co‐AAm) hydrogel (with LCST 37.5°C) were selected and associated with calcium alginate to prepare inorganic–organic hybrid biomineralized polysaccharide alginate beads via a one‐step method in this paper. Scanning electron microscopy (SEM) and energy dispersive X‐ray spectrometer (EDS) results demonstrated that calcium phosphate could not only be found in the surface but also in the cross‐section of biomineralized polysaccharide beads. Both equilibrium swelling and indomethacin release behavior were found to be pH‐ and thermo‐responsive. In addition, indomethacin release profile could be sustained with a inorganic–organic hybrid membrane: the release amount reached 96% within 4 hr for the unmineralized beads, while a drug release of only 64% obtained after subjecting the biomineralized polysaccharide beads to the same treatment. These results indicate that the biomineralized polysaccharide membrane could prevent the permeability of the encapsulated drug and reduce the drug release rate effectively. The studied system has the potential to be used as an effective smart sustainable delivery system for biomedical applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Carboxymethyl cellulose (CMC)/sodium alginate (SA) hydrogel beads were successfully prepared by Ca2+ ions crosslinking followed by gamma irradiation. The factors affecting beads formation are the composition of SA in the blend and concentration of calcium chloride as a crosslinking agent. The results indicated that the addition of CMC to SA increases the swelling (%) upto (1:3) (CMC:SA) ratio. The effect of different irradiation doses (2.5, 5, and 10 kGy) on swelling (%) was studied. At low doses, swelling (%) decreases upto 5 kGy then starts to increase at 10 kGy. The degree of the swelling (%) and release (%) of ammonium nitrate salt from beads were investigated under different pH (1.2, 5 and 7). The beads were characterized by FTIR, SEM and TGA to investigate molecular structure, morphology and thermal stability of beads.  相似文献   

4.
Complex beads composed of alginate and carboxymethyl chitin (CMCT) were prepared by dropping aqueous alginate-CMCT into an iron(III) solution. The structure and morphology of the beads were characterized by IR spectroscopy and scanning electron microscopy (SEM). IR confirmed electrostatic interactions between iron(III) and the carboxyl groups of alginate as well as CMCT, and the binding model was suggested as a three-dimensional structure. SEM revealed that CMCT had a porous morphology while alginate and their complex beads had a core-layer structure. The swelling behavior, encapsulation efficiency, and release behavior of bovine serum albumin (BSA) from the beads at different pHs were investigated. The BSA encapsulation efficiency was fairly high (>90%). It was found that CMCT disintegrated at pH 1.2 and alginate eroded at pH 7.4 while the complex beads could effectively retain BSA in acid (>85%) and reduce the BSA release at pH 7.4. The results suggested that the iron(III)-alginate-CMCT bead could be a suitable polymeric carrier for site-specific protein drug delivery in the intestine.  相似文献   

5.
Electrostatic extrusion was applied to the encapsulation of 3-ethoxy-4-hydroxybenzaldehyde (ethyl vanillin) in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. The calcium alginate/poly(vinyl alcohol) hydrogel spheres were formed after contact with the cross-linker solution of calcium chloride, followed by the freeze-thaw method for poly(vinyl alcohol) gel formation. The entrapment of aroma in beads was investigated by FTIR and thermal analysis (thermogravimetry/differential thermal gravimetry; TGA/DTG). The mass loss in the temperature range of 150?C300°C is related to degradation of the matrix and the release of ethyl vanillin. According to the DTG curve, the release of ethyl vanillin occurs at about 260°C. TGA measurements of the stored samples confirmed that formulations were stable for a period of one month. FTIR analysis provides no evidence for chemical interactions between flavour and alginate that would alter the nature of the functional groups in the flavour compound.  相似文献   

6.

The dynamic release of drug propranolol HCl from the propranolol HCl–resin complex (PRC) loaded calcium alginate beads has been studied in the buffer media of pH 1.2 at the physiological temperature 37°C. The PRC encapsulated beads demonstrated nearly 58.04% release while naked PRC particles released 98.00% drug in 24 h in the gastric fluid. The amount of drug released was found to increase with and decrease in the amount of sodium alginate in the beads. Similarly, with the increase in the amount of entrapped PRC particles within the beads, the quantity of drug released was also observed to increase. The degree of crosslinking of beads also affected the release kinetics. Interestingly, the release from naked PRC particles followed ‘first‐order’ kinetics while PRC particles, entrapped in calcium–alginate beads, exhibited ‘diffusion controlled’ release behavior as indicated by liner nature of fractional release vs. √t plot.  相似文献   

7.
A series of thermoresponsive sodium alginate-g-poly(vinyl caprolactam) (NaAlg-g-PNVCL) beads were prepared as drug delivery matrices of 5-flurouracil (5-FU) crosslinked by glutaraldehyde (GA) in the hydrochloric acid catalyst. Graft copolymers of sodium alginate with vinyl caprolactam were synthesized using azobisisobutyronitrile as an initiator, and characterized by Fourier infrared spectroscopy, differential scanning calrimetry and X-ray diffraction for analysis of the amorphous nature drug in the beads, and by scanning electron microscopy for the spherical nature of the beads. Preparation condition of the beads was optimized by considering the percentage of encapsulation efficiency, swelling behavior of beads and their release data. Effects of variables such as GA concentration, drug/polymer ratio and catalyst concentration on the release of 5-FU were carried out at two different temperatures (25 and 37 °C) in simulated intestinal fluid for 12 h. It was observed that, drug release from the beads decreased with increasing drug/polymer (d/p) ratio, extent of crosslinking agent and catalyst concentration. The swelling degree of graft copolymer beads was found to be increased with decreasing of environmental temperature. In vitro release studies were performed at 25 and 37 °C for 12 h, and showed that thermoresponsive graft copolymer beads had higher drug release behavior at 25 °C than that at 37 °C, following Fickian diffusion transport mechanism with slight deviation.  相似文献   

8.
A series of semi-interpenetrating, polymer network (semi-IPN), hydrogel beads, composed of calcium alginate (Ca-alginate) and poly(N-isopropylacrylamide) (PNIPAAM), were prepared for a pH/temperature-sensitive drug delivery study. The equilibrium swelling showed the independent pH- and thermo- responsive nature of the developed materials. At pH=2.1, the release amount of indomethacin incorporated into these beads was about 10% within 400 min, while this value approached to 95% at pH=7.4. The release rate of the drug was higher at 37 degrees C than that at 25 degrees C and increased slightly with increasing PNIPAAM content. These results suggest that the Ca-alginate/PNIPAAM beads have the potential to be used as an effective pH/temperature sustainable delivery system of bioactive agents. [GRAPHS: SEE TEXT] A summary of the temperature- and pH-dependence on the release of the drug over a period of 450 min. The effect of the temperature on the swelling of the beads is shown in the inset.  相似文献   

9.
Polysaccharide‐based thermo‐responsive material was prepared by grafting PNIPAAm onto hybrid alginate beads, in which a biomineralized polyelectrolyte layer was constructed aiming to enhance the mechanical strength and ensure higher graft efficiency. XPS results demonstrated that the incorporation of PNIPAAm to the hybrid beads was successful, and the PNIPAAm‐grafted beads were more hydrophilic than the ungrafted ones as indicated by their swelling behavior. The drug release behaviors revealed that the grafted beads were both thermo‐ and pH‐sensitive, and the PNIPAAm existed in the pores of the alginate beads acted as the “on–off” gates: the pores of the beads were covered by the stretched PNIPAAm to delay the drug release at 25°C and opened to accelerate the drug release at 37°C because of the shrinking of PNIPAAm molecules. This paper would be a useful example of grafting thermo‐responsive polymers onto biodegradable natural polymer substrate. The obtained beads provide a new mode of behavior for thermo‐responsive “smart” polysaccharide materials, which is highly attractive for targeting drug delivery system and chemical separation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In the present work, we synthesized pH-responsive interpenetrating network (IPN) hydrogel beads of polyacrylamide grafted κ-carrageenan (PAAm-g-CG) and sodium alginate (SA) for targeting ketoprofen to the intestine. The PAAm-g-CG was synthesized by free radical polymerization followed by alkaline hydrolysis under nitrogen gas. The PAAm-g-CG was characterized by elemental analysis, FTIR spectroscopy and thermogravimetric analysis (TGA). The drug-loaded IPN hydrogel beads were prepared by simple ionotropic gelation/covalent crosslinking method. The amorphous nature of drug in the beads was confirmed by differential scanning calorimetry and X-ray diffraction studies. The spherical shape of the beads was confirmed by scanning electron microscopic analysis. The beads exhibited ample pH-responsive behavior in the pulsatile swelling study. The ketoprofen release was significantly increased when pH of the medium was changed from acidic to alkaline. The beads showed maximum of 10% drug release in acidic medium of pH 1.2, and about 90% drug release was recorded in alkaline medium of pH 7.4. Stomach histopathology of albino rats indicated that the prepared beads were able to retard the drug release in stomach leading to the reduced ulceration, hemorrhage and erosion of gastric mucosa.  相似文献   

11.
麦饭石含量对载药复合凝胶小球释药性能的影响   总被引:1,自引:0,他引:1  
以瓜尔胶-g-聚丙烯酸/麦饭石复合水凝胶(GG-g-PAA/MS)和海藻酸钠(SA)为原料,双氯芬酸钠(DS)为模拟药物,采用离子凝胶法制备了载药复合凝胶小球,考察了pH敏感性以及MS含量对复合凝胶小球的包封率、载药率、溶胀性和药物释放行为的影响.结果表明:凝胶小球具有明显的pH敏感性,在不同pH介质中溶胀率和释放速率...  相似文献   

12.
An analytical model to describe diffusion of oligonucleotides from stable hydrogel beads is developed and experimentally verified. The synthesized alginate beads are Fe3+‐cross‐linked and polyelectrolyte‐doped for uniformity and stability at physiological pH. Data on diffusion of oligonucleotides from inside the beads provide physical insights into the volume nature of the immobilization of a fraction of oligonucleotides due to polyelectrolyte cross‐linking, that is, the absence of a surface‐layer barrier in this case. Furthermore, the results suggest a new simple approach to measuring the diffusion coefficient of mobile oligonucleotide molecules inside hydrogels. The considered alginate beads provide a model for a well‐defined component in drug‐release systems and for the oligonucleotide‐release transduction steps in drug‐delivering and biocomputing applications. This is illustrated by destabilizing the beads with citrate, which induces full oligonucleotide release with nondiffusional kinetics.  相似文献   

13.
In the present work, stability of calcium alginate beads has been remarkably improved by a novel strategy which consists of in situ formation of poly (acrylamide) within the calcium ions cross-linked sodium alginate beads. The resulting beads have been found to be stable for more than 48 h, in the physiological fluid (PF) of pH 7.4, while the plain alginate beads disintegrated within a couple of hours. The release of the anti-diabetic drug Gliclazide (Glz) from the beads was investigated under physiological conditions. The enhanced stability and prolonged release was also confirmed by an in vivo study on Albino Wistar rats.  相似文献   

14.
Biomineralized polysaccharide-coated alginate beads containing PNIPAAM were prepared. The resulting beads can be used as carriers for sustained pH/temperature-sensitive drug delivery. Characterizations using SEM, EDS, FTIR, and POM revealed that the beads were covered by the calcium-phosphate-mineralized alginate/chitosan membrane. The drug-release behavior was examined using indomethacin as a model drug, and the release profile of the developed materials was found to be responsive to pH and temperature. The release profile could be sustained under neutral conditions, indicating that the mineralized polysaccharide membrane could prevent the permeability of the encapsulated drug and reduce the drug release rate.  相似文献   

15.
应用壳聚糖-海藻酸盐微囊技术制备了一系列胰岛素微囊,并研究了不同反应条件如海藻酸钠浓度、壳聚糖浓度、壳聚糖分子量及壳聚糖溶液pH值对微囊的胰岛素包封率及其释放性能的影响。结果表明,海藻酸钠浓度越高,微囊对胰岛素的包封率越高,在模拟小肠液中释放速率越低;壳聚糖浓度越大,微囊的胰岛素包封率及其在模拟胃液中释放率越高,在模拟肠液中释放达最大值所需时间越长;而随壳聚糖分子量减小,微囊在胃液中释放率增高;壳聚糖溶液pH值的变化对微囊的胰岛素包封率未造成明显影响。  相似文献   

16.
Novel drug‐loaded hydrogel beads for intestine‐targeted controlled release were developed by using pH‐ and temperature‐sensitive carboxymethyl chitosan‐graft‐poly(N,N‐diethylacrylamide) (CMCTS‐g‐PDEA) hydrogel as carriers and vitamin B2 (VB2) as a model drug. The hydrogel beads were prepared based on Ca2+ ionic crosslinking in acidic solution and formed dual crosslinked network structure. The structure of hydrogel and morphology of drug‐loaded beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The study about swelling characteristics of hydrogel beads indicated that the beads had obvious pH‐ and temperature‐sensitivity. In vitro release studies of drug‐loaded beads were carried out in pH 1.2 HCl buffer solution and pH 7.4 phosphate buffer solution at 37°C, respectively. The results indicated that the dual crosslinked method could effectively control the drug release rate under gastrointestinal tract (GIT) conditions, which was superior to traditional single crosslinked beads. In addition, the effects of grafting percentage, pH value, and temperature on the release behavior of the VB2 were investigated. The drug release mechanism of CMCTS‐g‐PDEA drug‐loaded beads was analyzed by Peppa's potential equation. According to this study, the dual crosslinked hydrogel beads based on CMCTS‐g‐PDEA could serve as suitable candidate for drug site‐specific carrier in intestine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The dynamic release of a model drug (vitamin B2) from chitosan coated calcium alginate beads has been studied in the media of varying pH and the Hixon‐Crowel model has been applied to the experimental data, using a novel ‘curve area measurement’ (CAM) approach. The two release profiles, namely experimental and ideal, were found to be in close agreement except for the initial phase of the release process.  相似文献   

18.

The release of model drug vitamin B2 from calcium alginate/chitosan multi‐layered beads has been studied in the media of varying pH (3 h in the medium of pH 1.0 and for the remaining time in pH 7.4) at 37°C. The quantitative deviation of experimental data from the Higuchi model has been interpretated by using a newly developed ‘curve area measurement’ (CAM) approach. The higher deviation in the initial phase has been explained on the basis of porous structure of beads due to the use of low molecular weight polymers in the preparation of beads.  相似文献   

19.
Spherical, smooth-surfaced and mechanically stable alginate-poly(L-histidine) (PLHis) microcapsules with narrow particle size distributions were prepared by incubating calcium alginate beads in aqueous solutions of PLHis. The in vitro release characteristics, drug loading and encapsulation efficiency of the microcapsules were investigated using bovine erythrocytes hemoglobin (Hb) as a model drug. The results showed that the concentration of Ca(2+) ions had a considerable effect on the drug loading, encapsulation efficiency and in vitro release behavior of the microcapsules. When the concentration of CaCl(2) in the PLHis solution was increased from 0 to 3.0% (w/v), the drug loading and encapsulation efficiency decreased significantly from 38.0 to 4.3% and from 92.9 to 8.0%, respectively, while the total cumulative release of Hb from microcapsules in phosphate buffered saline solution (PBS, pH 6.8) decreased from 96.2 to 72.8% in 24 h. No significant protein release was observed during 70 h of incubation in hydrochloric acid solution (pH 1.2). However, under neutral conditions (PBS, pH 6.8), the Hb was completely and stably released within 24-70 h. An explosion test showed that the stability of alginate-PLHis microcapsules depended strongly on the concentration of PLHis and the calcium ions in solution. [Diagram: see text] Microscopy photo of Hb-loaded alginate-PLHis microcapsules.  相似文献   

20.
The present work describes the dynamic release of model drug riboflavin form uncoated and ethyl cellulose coated barium alginate beads in the media of continuous varying pH at the physiological temperature 37°C. The drug release behavior has been studied in the simulating gastric fluid (SGF, pH 1.2) for 0–2 h and then in the simulating intestinal fluid (SIF pH 6.8) for 2–48 h. In addition to the traditional dissolution test (TDT, the dynamic release has also been studied by a newly developed method, called ‘flow through diffusion cell’ (FTDC). The release profiles, obtained by using these two methods have been found to differ appreciably from each other. Moreover, the nature of the solid mass surrounding the beads in the FTDC method also influences the release behavior of beads. The uncoated beads demonstrated faster drug release of drug in the medium of lower pH (i.e., 1.2) as compared to that in the medium of pH 6.8 and the release process was found to be diffusion controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号