首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent developments in topological polymer chemistry are outlined. First, nonlinear polymer topologies are systematically classified on the basis of topological considerations of constitutional isomerism in a series of alkanes (CnH2n+2), monocycloalkanes (CnH2n), and polycycloalkanes (CnH2n?2, CnH2n?4, etc.). Various pairs of topological isomers are identified in randomly coiled, flexible polymer molecules with cyclic and branched structures. An electro‐ static self‐assembly and covalent fixation strategy has subsequently been developed for the efficient synthesis of a variety of topologically unique polymers, including monocyclic and polycyclic polymers, topological isomers, and topological block copolymers. In this process, new telechelics with moderately strained cyclic onium salt groups carrying multifunctional carboxylate counteranions have been designed as key polymeric precursors. Further extensions of topological polymer chem‐ istry have been achieved by the use of cyclic telechelics (kyklo‐telechelics) and cyclic macromonomers, obtainable also by means of the electrostatic self‐assembly and covalent fixation process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2905–2917, 2003  相似文献   

2.
The aggregation behavior and phase separation of nanorod (NR)/nanoparticle (NP) nanoinclusions immersed in semiflexible polymer brushes (PBs) are investigated by using molecular dynamics simulations. A variety of phases are formed by varying the size ratio q = σrp, where σr and σp are the diameters of NR and NPs, respectively, and the attractive interactions εM between NR/NP nanoinclusions and PBs. Ordered structures of NRs surrounded by large NPs are observed for the small size ratio q, and a dispersed mixture phase appears for the moderate size ratio q at weak attractive interaction. Meanwhile, the crystallization of NRs occurs at strong attractive interaction for the large size ratio q and a main face‐centered cubic (fcc) structure combined with a small amount of hexagonal‐closed packed (hcp) structure is observed. This investigation can provide some insights into the self‐assembly of complex nanoinclusions and promise a new approach for controlling the self‐assemble behavior of NPs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 299–309  相似文献   

3.
The temperature‐responsive poly (N, N‐diethylacrylamide) (pDEAAm) with narrower molecular weight distribution was prepared by the atom transfer radical polymerization and characterized by 1HNMR and gel permeation chromatography. The temperature‐responsive “tadpole‐shaped” BSA–pDEAAm hybrids were fabricated via a free Cys‐34 residue of bovine serum albumin (BSA) site specifically binding to the end group disulfide bonds of pDEAAm and characterized by native‐polyacrylamide gel electrophoresis (Native‐PAGE) and matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Their temperature‐responsive behaviors were measured by ultraviolet‐visible spectra (UV‐Vis). The lower critical solution temperature (LCST) of the pDEAAm was identified as 28°C, and the LCST of BSA–pDEAAm hybrids was identified as 31°C. The morphologies of BSA–pDEAAm hybrids self‐assembled in the aqueous solutions with two different temperatures at 25 °C and 40°C were investigated by transmission electron microscopy. Below the LCST of BSA–pDEAAm hybrids, the separate spherical nanoparticles were observed. In contrast, bundles and clusters were observed above the LCST of BSA–pDEAAm hybrids. The results suggested that the self‐assembly morphology of BSA–pDEAAm hybrids depended upon the pDEAAm block in BSA–pDEAAm hybrids, and the morphology transitions were effected by the LCST of BSA–pDEAAm hybrids. It would be expected to be used in biomedicine and materials science. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Block copolymers with increased Flory–Huggins interaction parameters (χ) play an essential role in the production of sub‐10 nm nanopatterns in the growing field of directed self‐assembly for next generation lithographic applications. A library of PDMS‐b‐PEO block copolymers were synthesized by click chemistry and their interaction parameters (χ) determined. The highest χ measured in our samples was 0.21 at 150 °C, which resulted in phase‐separated domains with periods as small as 7.9 nm, suggesting that PDMS‐b‐PEO is a prime candidate for sub‐10 nm nanopatterning. To suppress PEO crystallization, PDMS‐b‐PEO was blended with (l )‐tartaric acid (LTA) which allows for tuning of the self‐assembled morphologies. Additionally, it was observed that the order‐disorder transition temperature (TODT) of PDMS‐b‐PEO increased dramatically as the amount of LTA in the blend increased, allowing for further control over self‐assembly. To understand the mechanism of this phenomenon, we present a novel field‐based supramolecular model, which describes the formation of copolymer‐additive complexes by reversible hydrogen bonding. The mean‐field phase separation behavior of the model was calculated using the random phase approximation (RPA). The RPA analysis reproduces behavior consistent with an increase of the effective χ in the PDMS‐b‐(PEO/LTA suprablock). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2200–2208  相似文献   

5.
The phase‐separation kinetics of liquid‐crystalline polymer/flexible polymer blends was studied by the coupled time‐dependent Ginzberg–Landau equations for compositional order parameter ? and orientational order parameter Sij. The computer simulations of phase‐separated structures of the blends were performed by means of the cell dynamical system in two dimensions. The compositional ordering processes of phase separation are demonstrated by the time evolution of ?. The influence of orientational ordering on compositional ordering is discussed. The small‐angle light scattering patterns are numerically reproduced by means of the optical Fourier transformation of spatial variation of the polarizability tensor αij, and the azimuthal dependence of the scattering intensity distribution is interpreted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2915–2921, 2001  相似文献   

6.
Thin films composed of polycyclohexane (PCHE), zinc(II)‐5,10,15,20‐tetra‐(2‐naphthyl)porphyrin (ZnTNpP), and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are prepared to investigate their potential for the controlled self‐assembly of a porphyrin/fullerene donor–acceptor complex in a polymer thin film. The compatibilities of PCHE/PCBM (p), PCHE/ZnTNpP (q), and ZnTNpP/PCBM (r) in these blends have a significant effect on the dispersion of the ZnTNpP/PCBM donor–acceptor complex in the PCHE thin film. When the compatibilities are p << q, r, and q ≈ r, the ZnTNpP/PCBM donor–acceptor complex is formed between the PCHE and PCBM phases. This concept to form a controlled self‐assembly of the ZnTNpP/PCBM donor–acceptor complex may be applied to various combinations of porphyrin/fullerene systems in polymer thin film solar cells to achieve excellent performance. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 743–746  相似文献   

7.
Blends of poly(2‐vinyl pyridine)‐block‐poly(methyl methacrylate) (P2VP‐b‐PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP‐b‐PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self‐assembled nanostructures of the P2VP‐b‐PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1894–1905, 2009  相似文献   

8.
This review covers recent advances in developing square arrays in thin films using block copolymers. Theoretical and experimental results from self‐assembly of block copolymers in bulk and thin films, directed self‐assembly of block copolymers confined in small wells, on substrates with arrays of posts, and on chemically nanopatterned substrates, as well as applications as nanolithography are reviewed. Some future work and hypothesis are discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

9.
We have demonstrated directed self‐assembly of poly(styrene‐b‐dimethylsiloxiane) (PS‐b‐PDMS) down to sub‐10‐nm half‐pitch by using grating Si substrate coated with PDMS. The strong segregation between PS and PDMS enables us to direct the self‐assembly in wide grooves of the grating substrate up to 500 nm in width. This process can be applied to form various type of sub‐10‐nm stripe pattern along variety of grating shape. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
Block copolymer directed self‐assembly (BCP) with chemical epitaxy is a promising lithographic solution for patterning features with critical dimensions under 20 nm. In this work, we study the extent to which lamellae‐forming poly(styrene‐b‐methyl methacrylate) can be directed with chemical contrast patterns when the pitch of the block copolymer is slightly compressed or stretched compared to the equilibrium pitch observed in unpatterned films. Critical dimension small angle X‐ray scattering complemented with SEM analysis was used to quantify the shape and roughness of the line/space features. It was found that the BCP was more lenient to pitch compression than to pitch stretching, tolerating at least 4.9% pitch compression, but only 2.5% pitch stretching before disrupting into dislocation or disclination defects. The more tolerant range of pitch compression is explained by considering the change in free energy with template mismatch, which suggests a larger penalty for pitch stretching than compressing. Additionally, the effect of width mismatch between chemical contrast pattern and BCP is considered for two different pattern transfer techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 595–603  相似文献   

11.
As a vast number of novel materials in particular inorganic nanoparticles have been invented and introduced to all aspects of life, public concerns about how they might affect our ecosystem and human life continue to arise. Such incertitude roots at a fundamental question of how inorganic nanoparticles self‐assemble with biomolecules in solution. Various techniques have been developed to probe the interaction between particles and biomolecules, but very few if any can provide advantages of both rapid and convenient. Herein, we report a systematic investigation on quantum dots (QDs) and protein self‐assembly inside a capillary. QDs and protein were injected to a capillary one after another. They were mixed inside the capillary when a high voltage was applied. Online separation and detection were then achieved. This new method can also be used to study the self‐assembly kinetics of QDs and protein using the Hill equation, the KD value for the self‐assembly of QDs and protein was calculated to be 8.8 μM. The obtained results were compared with the previous out of‐capillary method and confirmed the effectiveness of the present method.  相似文献   

12.
Herein, we designed four peptides appended with different numbers of histidine (Hisn‐peptide). We launched a systematic investigation on quantum dots (QDs) and Hisn‐peptide self‐assembly in solution using fluorescence coupled CE (CE‐FL). The results indicated that CE‐FL was a powerful method to probe how ligands interaction on the surface of nanoparticles. The self‐assembly of QDs and peptide was determined by the numbers of histidine. We also observed that longer polyhistidine tags (n ≤ 6) could improve the self‐assembly efficiency. Furthermore, the formation and separation of QD‐peptide assembly were also studied by CE‐FL inside a capillary. The total time for the mixing, self‐assembly, separation, and detection was less than 10 min. Our method greatly expands the application of CE‐FL in QDs‐based biolabeling and bioanalysis.  相似文献   

13.
Photopolymerization in and of lyotropic liquid crystal (LLC) template phases shows great promise for generating nanostructure in organic polymers. Interestingly, the order imposed on the polymerization system in LLCs significantly alters polymerization kinetics. The rate of polymerization of hydrophilic monomers increases with increasing LLC order, primarily due to monomer/polymer association with surfactant and the resulting decrease of growing polymer chain diffusion. Conversely, as LLC order increases, hydrophobic monomers become less segregated as nonpolar volume increases, which decreases polymerization rate. The efficiency of initiators is also dependent on LLC template order, further contributing to polymerization rate changes. When reactive surfactants are used, LLC mesophase, location of reactive group, and aliphatic tail length also affect polymerization kinetics. Overall, these photopolymerization kinetics directly relate to the segregation behavior and local order of reactive groups and thus can be used to probe nanostructure evolution, facilitating understanding and control of ultimate polymer nanostructure. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 471–489  相似文献   

14.
The self‐assembly properties of N(9)‐(2,3‐dihydroxypropyl adenine) (DHPA), a plausible prebiotic nucleoside analogue of adenosine, were investigated using density functional theory. Two different isomers were considered, and it is found that while both isomers can form a variety of structures, including chains, one of them is also able to form cages and helixes. When these results were put in the context of substrate supported molecular self‐assembly, it is concluded that gas‐phase self‐assembly studies that consider isomer identity and composition not only can aid interpreting the experimental results, but also reveal structures that might be overlooked otherwise. In particular, this study suggest that a double‐helical structure made of DHPA molecules which could have implications in prebiotic chemistry and nanotechnology, is stable even at room temperature. For example electrical properties (energy gap of 4.52eV) and a giant permanent electrical dipole moment (49.22 Debye) were found in our larger double‐helical structure (3.7 nm) formed by 14 DHPA molecules. The former properties could be convenient for construction of organic dielectric‐based devices.  相似文献   

15.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   

16.
Polymer dispersed liquid crystal (PDLC) films were prepared by a devised method, in which photo‐polymerization induced phase separation in a mixtures of a macro‐iniferter, methyl acrylater, and liquid crystal. The morphology of the obtained PDLC films was examined on a polarized optical microscopy, and the effect of molecular weight of MIs on the electro‐optical properties was deliberately investigated. Decreasing the molecular weight of MIs in the films led to formation of larger liquid crystal droplets and a lower Vth values. Vsat increased and the memory effect decreased because of the increased interface anchoring strength induced by the higher molecular weight of polymer matrices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1530–1534, 2009  相似文献   

17.
Spreading amphiphilic diblock copolymers on a two‐dimensional liquid interface has been observed to produce nanoscale features via self‐assembly. Here, we develop a model that incorporates the effects of polymer entanglement and surface diffusion in polymer blends to quantitatively predict the size of experimentally observed structures. Simulations show that different polymers in the blend cooperate to self‐assemble into nanoscale features of varying sizes. Characteristic nanoscopic dimensions can be tuned by adjusting two easily controllable macroscopic quantities: the blend composition and the initial surface concentration. Theoretical predictions are in agreement with experimentally measured feature dimensions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

18.
When a mixture of liquid crystal (LC) and photo reactive monomer is irradiated by UV light, polymerization occurs and LC droplets form through phase separation, producing polymer dispersed LCs (PDLCs). Although size control of LC droplets and reduced amounts of LC in PDLC films are important in applications, precise size control of LC droplets at a low LC fraction has not yet been accomplished. In this study, the phase diagrams of the LC/initial monomer and the LC/polymer during polymerization were used to control LC droplet size at various LC fractions. Both the relative position of the sample in the initial phase diagram and the shift of the phase separation line during polymerization were shown to be important in determining the size of LC droplets. Our results are expected to provide a new strategy for precise size control of LC droplets especially at a low LC fraction range, which would be a great help for PDLC applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

19.
This article reports the preparation and self‐assembly of polyaniline (PANI) nanotubes, which were chemically synthesized by using in situ doping polymerization in the presence of ammonium persulfate (APS; (NH4)S2O8) as the oxidant without the use of an external template. The synthesized hierarchically nanotubes with a shape of a single nanotube with a length of 0.6 to 0.8 µm and an average with of 100 nm assembled from nanoparticles. The effects of the [salicylic acid]/[aniline] ratio on the size and capacitance of PANI nanotubes were studied. The specific capacitance behavior of the PANI nanotubes was also investigated by using cyclic voltammogram and galvanostatic charge–discharge tests. A maximum discharge‐specific capacitance of 422.5 F/g could be achieved, suggesting its potential application in electrode material for electrochemical capacitors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, we described the fundamental properties of novel polymer monoliths that were prepared from a water‐soluble crosslinking agent. Each monolith was evaluated by scanning electron microscope (SEM) and scanning probe microscope (SPM) to observe the monolithic structure, and the polymer films that were prepared from several monomers were evaluated by the contact angle of water. As results of evaluations, the polymer prepared from a water‐soluble crosslinking agent had high hydrophilicity. Furthermore, SEM evaluations suggested that polymer porogenic solvent (PEG) was contributed to the construction of monolithic structure, and the polymerization degree of PEG was also taken effect of the structural changing by the variation of phase separation. Additionally, the results of SPM evaluations and the differences of monolithic structure were also reflected under water condition although the swelling of polymer was observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3811–3817, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号