首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The aim of this work is to better understand the interaction between the confined dihydrogen molecule and armchair (2,2), (3,3) (4,4), (5,5), and (6,6) single‐walled carbon nanotubes (SWNT) using Restricted Hartree–Fock (RHF) and Density Functional Theory (DFT) methods using B3LYP and CAM‐B3LYP functionals. Depending on the calculation method and its orientation inside the nanotube, H2 binds differently. We found that H? H bond length increases when H2 is trapped in CNT (2,2) and decreases for CNT (3,3) and (4,4). The characteristics of confined H2 in (5,5) and (6,6) nanotubes are similar to H2 in a free state. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
New Lennard‐Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all‐atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10−11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene–water interface with one O H bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air–water interface, graphene–water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air–water and graphene–water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
The intramolecular hydrogen bond, molecular structure, and vibrational frequencies of α‐chloro acetylacetone have been investigated. Fourier transform infrared and Fourier transform Raman spectra of this compound and its deuterated analogue were recorded in the regions 400–4,000 cm?1 and 50–4,000 cm?1, respectively. Rigorous normal coordinate analysis has been performed at the B3LYP/6‐311++G** level of theory for purposes of comparison. The complete vibrational assignment for TFAA has been made on the basis of the calculated potential energy distribution. We also applied the atoms in molecules theory and natural bond orbital method for the analysis of the hydrogen bond in α‐Chloro acetylacetone and acetylacetone. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

4.
Two fully optimized geometries of 3‐nitro‐1,2,4‐triazol‐5‐one (NTO)–NH3 complexes have been obtained with the density function theory (DFT) method at the B3LYP/6‐311++G** level. The intermolecular interaction energy is calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction of the NTO–NH3 complexes is ?37.58 kJ/mol. Electrons in complex systems transfer from NH3 to NTO. The strong hydrogen bonds contribute to the interaction energies dominantly. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on vibrational analysis, the changes of thermodynamic properties from the monomer to complexes with the temperature ranging from 200 K to 800 K have been obtained using the statistical thermodynamic method. It is found that two NTO–NH3 complexes can be produced spontaneously from NTO and NH3 at normal temperature. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

5.
Polynitrile anions are important in both coordination chemistry and molecular materials chemistry, and are interesting for their extensive electronic delocalization. The title compound crystallizes with two symmetry‐independent half 4,4′‐bipyridine‐1,1′‐diium (bpyH22+) cations and two symmetry‐independent 1,1,3,3‐tetracyano‐2‐ethoxypropenide (tcnoet) anions in the asymmetric unit. One of the bpyH22+ ions is located on a crystallographic twofold rotation axis (canted pyridine rings) and the other is located on a crystallographic inversion center (coplanar pyridine rings). The ethyl group of one of the tcnoet anions is disordered over two sites with equal populations. The extended structure exhibits two separate N—H...NC hydrogen‐bonding motifs, which result in a sheet structure parallel to (010), and weak C—H...NC hydrogen bonds form joined rings. Two types of multicenter CN...π interactions are observed between the bpyH22+ rings and tcnoet anions. An additonal CN...π interaction between adjacent tcnoet anions is observed. Using density functional theory, the calculated attractive energy between cation and anion pairs in the tcnoet...π(bipyridinediium) interactions were found to be 557 and 612 kJ mol−1 for coplanar and canted bpyH22+ cations, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号