首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this review, we firstly introduce physical mechanism of fluorescence resonance energy transfer (FRET), the methods to measure FRET efficiency, and the applications of FRET. Secondly, we introduce the principle and applications of plasmon‐enhanced fluorescence (PEF). Thirdly, we focused on the principle and applications of plasmon‐enhanced FRET. This review can promote further understanding of FRET and PE‐FRET.  相似文献   

2.
The optical properties of a series of three cyclophanes comprising either identical or different perylene bisimide (PBI) chromophores were studied by UV/Vis absorption spectroscopy and their distinctive spectral features were analyzed. All the investigated cyclophanes show significantly different absorption features with respect to the corresponding constituent PBI monomers indicating strong coupling interactions between the PBI units within the cyclophanes. DFT calculations suggest a π‐stacked arrangement of the PBI units at close van der Waals distance in the cyclophanes with rotational displacement. Simulations of the absorption spectra based on time‐dependent quantum mechanics properly reproduced the experimental spectra, revealing exciton‐vibrational coupling between the chromophores both in homo‐ and heterodimer stacks. The PBI cyclophane comprising two different PBI chromophores represents the first example of a PBI heterodimer stack for which the exciton coupling has been investigated. The quantum dynamics analysis reveals that exciton coupling in heteroaggregates is indeed of similar strength as for homoaggregates.  相似文献   

3.
The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near‐infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG‐b‐PCL block‐copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37 %) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications.  相似文献   

4.
Gold nanorods are anisotropic and exhibit different optical characteristics in both transverse and longitudinal directions, so the plasmon resonance in the near‐infrared region will reflect two absorption peaks. Because of strong enhancements of electromagnetic fields of gold nanorods, gold nanorods are widely used in medical treatment, biological detection, sensors, solar cells and other fields. Since rapid developments of gold nanorods, it is necessary to sort out the recent achievements. In this review, we select three classifications of single nanorods/nanowires, dimers and assembled nanorods to introduce their syntheses methods, optical properties and applications respectively. We firstly overview the history of nanorods/nanowires syntheses and summarize the improvement of the commonly utilized seed‐mediated growth synthesis method; and then, physically, nano‐plasmonic and optical properties of single and assembled nanorod/nanowires are concluded in detail. Lastly, we mainly summarize the recent advances in applications and provide perspective in different fields.  相似文献   

5.
The photochemistry of cyanine J-aggregates on the surface of colloidal Ag nanoparticles is reported. The photochemistry is initiated through ultrafast photoexcitation of the plasmon band in Ag nanoparticles, producing an enhanced near-field that interacts with the J-aggregate monolayer. Through transient absorption spectroscopy, we show that photoexcitation of the plasmon in Ag nanoparticles leads to exciton dynamics that differ strongly from J-aggregates alone or for J-aggregate monolayers on bulk metal surfaces. Specifically, charge-separated states with a lifetime of approximately 300 ps between the J-aggregate and Ag colloid are formed. The reduction of the Ag nanoparticles is shown to be a multielectron process.  相似文献   

6.
7.
The copper‐mediated Ullmann coupling of 1,7‐dibromoperylene bisimides afforded structurally perfect singly‐linked perylene bisimide (PBI) arrays, whilst the homo‐coupling of 1,12‐dibromoperylene bisimides gave doubly‐linked and triply‐linked diperylene bisimides. The interactions of three bay‐linked diperylene bisimides that differed in their linkage (singly, doubly, and triply) were investigated in their neutral and reduced forms (mono‐anion to tetra‐anion). UV/Vis absorption and fluorescence spectroscopy revealed different degrees of interaction, which was explained by exciton coupling and conjugation effects. The electrochemical properties and spectroelectrochemistry also showed quite‐different degrees of PBI interactions in the reduced mixed‐valence species, which was apparent by the observation of CT bands. The interpretation of the experimental findings was supported by spin‐restricted and ‐unrestricted DFT and time‐dependent TD‐DFT calculations with the long‐range‐corrected CAM‐B3LYP functional. Accordingly, the degree of interaction in both the neutral and reduced forms of the bay‐linked PBIs was qualitatively in the order doubly linked<singly linked?triply linked, owing to the different degrees of twisting and flexibility between the two PBIs moieties. Only triply linked diPBI showed completely delocalized wavefunctions over the entire π‐system.  相似文献   

8.
Exciton coupling may arise when chromophores are brought into close spatial proximity. Herein the intra‐nanocrystal exciton coupling of the surface complexes formed by coordination of 8‐hydroxyquinoline to ZnS nanocrystals (NCs) is reported. It is studied by absorption, photoluminescence (PL), PL excitation (PLE), and PL lifetime measurements. The exciton coupling of the surface complexes tunes the PL color and broadens the absorption and PLE windows of the NCs, and thus is a potential strategy for improving the light‐harvesting efficiency of NC solar cells and photocatalysts.  相似文献   

9.
A fluorophore–phenylamine derivative ( L ) has been coupled with silver nanocrystals (NCs) to construct an L– Ag nanohybrid. Owing to synergic effects of the L and Ag components, the exciton–plasmon interactions between L and Ag increase the strength of the donor–acceptor interaction within the nanohybrid, a fact that results in an energy‐transfer process and further brings about a dramatic redshift of single‐photon absorption and fluorescence, and a decreased fluorescence FL lifetime. The coupling effect also leads to enhancement of a series of nonlinear optical properties, including two‐photon‐excited fluorescence (TPEF), two‐photon‐absorption (TPA) cross section (δ), two‐photon‐absorption coefficient (β), nonlinear refractive index (γ), and third order nonlinear optical susceptibility (χ(3)). The enhanced two‐photon fluorescence of the nanohybrid is proven to be potentially useful for two‐photon microscopy of live cells, such as HepG2. Moreover, cytotoxicity tests show that the low‐micromolar concentrations of the nanohybrid do not cause significant reduction in cell viability over a period of at least 24 h and should be safe for further biological studies.  相似文献   

10.
We report the unprecedented observation of plasmon coupling between silver nanowires, showing how the surface‐enhanced Raman scattering depends upon this interaction and how the spectrum can be shaped by the hot spot. Such observations were accomplished by Raman spectroscopy mapping of silver nanowires modified with rhodamine. The local spectra on the hot spots were measured by darkfield hyperspectral microscopy, a powerful but uncommonly used technique that is capable of determining the location, structure, and spectra of the hot spots. The result obtained by the simulation of two parallel nanowires based on the discrete dipole approximation (DDA) method was in excellent agreement with the results obtained experimentally.  相似文献   

11.
AcMP8 is the Cys-14-acetylated water-soluble heme-octapeptide fragment obtained proteolytically from cytochrome c. Two successive dimerization equilibria are observed with increasing ionic strength in aqueous solution at neutral pH (part 1, preceding article). The electronic spectra of the two pi-pi dimers were extracted from the absorption envelopes at 2.01 and 4.02 M ionic strength and resolved by Gaussian analysis. The principal transitions were assigned using a tailored version of molecular exciton theory based on coupling of the main x- and y-polarized transition dipole moments of the interacting heme groups. The spectra of both pi-pi dimers indicate that the y-polarized exciton states are blue-shifted relative to the excited states of the monomer, while the x-polarized exciton states exhibit a red shift. These shifts were correctly predicted by a simple dipole-dipole coupling model. From an analysis of the resultant transition dipole moments to the exciton states with B(x)()(0,0) and B(y)()(0,0) character and the magnitudes of their red and blue exciton shifts, respectively, we have determined the dipole-dipole interaction geometries for both dimers. The principal difference between the interaction geometry in the first dimer and that in the second is a stronger interaction for the y-polarized transition dipoles and somewhat weakened interaction for the x-polarized transition dipoles. From an analysis of available crystallographic data for porphyrin and metalloporphyrin pi-pi dimers (Scheidt, W. R.; Lee, Y. J. Struct. Bonding 1987, 64, 1) and the results of our exciton model, we conclude that the origin of the coordinate system for the Soret transition dipole moments of AcMP8 is not metal-centered. Furthermore, since the true directions of the x- and y-axes of the low-symmetry heme chromophore in AcMP8 are unknown, we have not been able to determine the structures of the pi-pi dimers from a knowledge of their transition dipole-dipole interaction geometries. This study therefore highlights one of the shortfalls of molecular exciton theory.  相似文献   

12.
The theoretical investigation of excited state for large photoactive systems plays the fundamental role in understanding various optical processes in material and biological system. Frenkel exciton (FE) model describing the excitation of the whole system as a collective effect of quasi-particles of excitons, that is, bound electron–hole pairs, is well-known as a simple but powerful theoretical scheme to present a clear and insightful physical picture for complicated excited state problems. In this mini-review, we summarize our recent developments of quantum chemical methods based on exciton models and their related applications for large photoactive systems. It is shown that our developed ab initio renormalized exciton model (REM) and block interaction product state (BIPS) schemes provide new efficient and automatic low-scaling excited state methods for both localized and delocalized excited states in large systems. Illustrative examples including simulations of both absorption and emission spectrum in large sized molecular aggregates, indicate the exciton model based methods provide promising computational tools for unravel the mechanism of photophysical and photochemical processes in large photoactive systems.  相似文献   

13.
Our understanding of how the geometry of metallic nanostructures controls the properties of their surface plasmons, based on plasmon hybridization, is useful for developing high-performance substrates for surface enhanced spectroscopies. In this tutorial review, we outline the design of metallic nanostructures tailored specifically for providing electromagnetic enhancements for surface enhanced Raman scattering (SERS). The concepts developed for nanoshell-based substrates can be generalized to other nanoparticle geometries and scaled to other spectroscopies, such as surface enhanced infrared absorption spectroscopy (SEIRA).  相似文献   

14.
Surface plasmon resonance microscopy (SPRM) is a versatile platform for chemical and biological sensing and imaging. Great progress in exploring its applications, ranging from single‐molecule sensing to single‐cell imaging, has been made. In this Minireview, we introduce the principles and instrumentation of SPRM. We also summarize the broad and exciting applications of SPRM to the analysis of single entities. Finally, we discuss the challenges and limitations associated with SPRM and potential solutions.  相似文献   

15.
In this work, we study the enhancement of Raman signals and photocatalytic activity of Ag/ZnO heterojunctions with an Ag content of 1 at.%, which were synthesized by photochemical deposition of Ag nanoparticles onto pre-synthesized ZnO nanorods. A strong interaction between Ag and ZnO nanocrystals were evidenced by XPS and UV-vis spectroscopy. The binding energy of Ag nanoparticles shifts toward lower energy compared to that of pure Ag nanoparticles, revealing that electrons transfer from Ag to the ZnO nanocrystals. The red shift of the plasmon absorption peak of Ag nanoparticles in Ag/ZnO heterojunctions further confirms the strong interaction between the two components. This strong interaction, arising from the coupling between Ag and ZnO nanocrystals, is responsible for the enhancement of Raman signals and photocatalytic activity of the Ag/ZnO heterojunctions.  相似文献   

16.
《Tetrahedron: Asymmetry》2001,12(22):3125-3137
Binding to human serum albumin (HSA) of the natural, achiral carotenoid crocetin, having hypocholesterolemic and antitumour effects, was investigated in detail by circular dichroism (CD) and absorption spectroscopy. It has been shown that in the visible absorption region the crocetin–HSA complex exhibits a well-defined induced circular dichroic spectrum with two major bands of opposite sign, proving excitonic interaction between carotenoids bound in a left-handed chiral arrangement on the albumin molecule. In the course of CD titration experiments, palmitic acid gradually decreased the exciton band intensities indicating that crocetin and palmitic acid have common binding sites on HSA. To investigate potential sources of the intermolecular excitonic interaction, molecular modeling studies were performed fitting crocetin molecules to the long-chain fatty acid binding sites of HSA, determined recently by X-ray crystallographic measurements. The results suggest that binding of crocetin to domain III of the albumin might be responsible for the observed intermolecular exciton coupling. Crocetin binding was accompanied by a significant red shift in the visible absorption spectrum which has showed no excitonic contribution but rather indicates the higher polarizability of the protein environment.  相似文献   

17.
The shape anisotropy of nanorods gives rise to two distinct orientational modes by which nanorods can be assembled, i.e., end-to-end and side-by-side, analogous to the well-known H and J aggregation in organic chromophores. Optical absorption spectra of gold nanorods have earlier been observed to show a red-shift of the longitudinal plasmon band for the end-to-end linkage of nanorods, resulting from the plasmon coupling between neighboring nanoparticles, similar to the assembly of gold nanospheres. We observe, however, that side-by-side linkage of nanorods in solution shows a blue-shift of the longitudinal plasmon band and a red-shift of the transverse plasmon band. Optical spectra calculated using the discrete dipole approximation method were used to simulate plasmon coupling in assembled nanorod dimers. The longitudinal plasmon band is found to shift to lower energies for end-to-end assembly, but a shift to higher energies is found for the side-by-side orientation, in agreement with the optical absorption experiments. The strength of plasmon coupling was seen to increase with decreasing internanorod distance and an increase in the number of interacting nanorods. For both side-by-side and end-to-end assemblies, the strength of the longitudinal plasmon coupling increases with increasing nanorod aspect ratio as a result of the increasing dipole moment of the longitudinal plasmon. For both the side-by-side and end-to-end orientation, the simulation of a dimer of nanorods having dissimilar aspect ratios showed a longitudinal plasmon resonance with both a blue-shifted and a red-shifted component, as a result of symmetry breaking. A similar result is observed for a pair of similar aspect ratio nanorods assembled in a nonparallel orientation. The internanorod plasmon coupling scheme concluded from the experimental results and simulations is found to be qualitatively consistent with the molecular exciton coupling theory, which has been used to describe the optical spectra of H and J aggregates of organic molecules. The coupled nanorod plasmons are also suggested to be electromagnetic analogues of molecular orbitals. Investigation of the plasmon coupling in assembled nanorods is important for the characterization of optical excitations and plasmon propagation in these nanostructures. The surface plasmon resonance shift resulting from nanorod assembly also offers a promising alternative for analyte-sensing assays.  相似文献   

18.
The synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all‐solution‐processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic‐enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible‐light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption. The enhancement in optical properties is mainly due to local field enhancement effect and coupling between exciton and LSPR. Luminescent characteristics are investigated and discussed in detail. Recyclability tests showed that the Au/ZnO substrate is reusable by cleaning and has a long shelf life. Our result suggests that plasmonic enhancement of photocatalytic performance is not necessarily a trade‐off for enhanced near‐band‐edge emission in Au/ZnO. This approach may give rise to a new class of versatile platforms for use in novel multifunctional and integrated devices.  相似文献   

19.
The rapid development of organic electronics is closely related to the availability of molecular materials with specific electronic properties. Here, we introduce a novel synthetic route enabling a unilateral functionalization of acenes along their long side, which is demonstrated by the synthesis of 1,2,10,11,12,14‐hexafluoropentacene ( 1 ) and the related 1,2,9,10,11‐pentafluorotetracene ( 2 ). Quantum chemical DFT calculations in combination with optical and X‐ray absorption spectroscopy data indicate that the single‐molecule properties of 1 are a connecting link between the organic semiconductor model systems pentacene (PEN) and perfluoropentacene (PFP). In contrast, the crystal structure analysis reveals a different packing motif than for the parent molecules. This can be related to distinct F???H interactions identified in the corresponding Hirshfeld surface analysis and also affects solid‐state properties such as the exciton binding energy and the sublimation enthalpy.  相似文献   

20.
单重态激子裂分指的是在有机分子中一个单重态激子与相邻的基态发色团相互作用形成两个三重态激子的过程。利用这种多激子效应制成的光伏器件有望突破肖克利-奎瑟限制,使光电转换的理论效率由30%提高到44.4%。近年来各国科学家在裂分材料的设计合成和器件化应用方面取得了一定的进展,但是对于激子裂分物理本质的认知仍然存在争议和分歧。本文较为系统地介绍了激子裂分材料的最新进展和本研究组的相关工作。简要回顾了激子裂分的发展历史,从概念、裂分的发生条件和作用机制三方面介绍了激子裂分过程,综述了具有分子间和分子内裂分性质的材料的最新研究成果。在系统归纳激子裂分研究现状的基础上对单重态激子裂分的发展趋势和应用探索指出了可能的方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号