首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coarse‐grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein–ligand binding processes. We chose two protein–ligand systems, the levansucrase–sugar (glucose or sucrose), and LinB–1,2‐dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand‐binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse‐grained (CG) ligand molecules revealed potential ligand‐binding sites on the protein surfaces other than the real ligand‐binding sites. The ligands bound most strongly to the real ligand‐binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase–sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand‐binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein–ligand binding processes. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The parallel implementation of a recently developed hybrid scheme for molecular dynamics (MD) simulations (Milano and Kawakatsu, J Chem Phys 2009, 130, 214106) where self‐consistent field theory (SCF) and particle models are combined is described. Because of the peculiar formulation of the hybrid method, considering single particles interacting with density fields, the most computationally expensive part of the hybrid particle‐field MD simulation can be efficiently parallelized using a straightforward particle decomposition algorithm. Benchmarks of simulations, including comparisons of serial MD and MD‐SCF program profiles, serial MD‐SCF and parallel MD‐SCF program profiles, and parallel benchmarks compared with efficient MD program GROMACS 4.5.4 are tested and reported. The results of benchmarks indicate that the proposed parallelization scheme is very efficient and opens the way to molecular simulations of large scale systems with reasonable computational costs. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
In this work, the combined iterative Boltzmann inversion/conditional reversible work scheme is extended with a little modifications to derive the systematically coarse‐grained (CG) potentials for simulating two typical atactic polymer blends composed of poly(methyl methacrylate) (PMMA) and poly(vinyl chloride) (PVC) or polystyrene (PS). Molecular dynamics simulations are extensively performed on the two blends with a wide formulation range. It is revealed by these simulations that, throughout the entire composition range, the PMMA/PVC blend is homogeneous whereas the PMMA/PS blend undergoes phase separation, which agrees well with the experimental observation that the former exhibits strong interactions that are absent in the latter. Depending upon the formulation, the immiscible PMMA/PS blend presents one single‐ or double‐continuous phase. It is further confirmed that intermolecular interactions play the key roles in forming the phase morphologies, which in turn can be inferred from only the three nonbonded CG potentials of one unlike pair and two like pairs.

  相似文献   


4.
The stereoregular poly(methyl methacrylate)/poly(vinyl chloride) blends with a wide formulation range are extensively simulated using the coarse‐grained (CG) molecular dynamics (MD) method. To improve the representability, the bonded CG potentials are re‐parameterized against the atomistic simulated melt systems whereas the nonbonded CG potentials are adopted as developed in our previous work. Based on the CG potentials, the MD simulations reproduce all the local distributions of pure systems and the miscibility of mixed systems. Moreover, the global conformational properties are also closer to the target ones than those obtained using the previous CG potentials. The changes in density and volume upon mixing are computed together with the energies of mixing. They are all negative over the entire composition range and indicate stronger intermolecular interactions between distinct components than those between identical components. In particular, it is found that upon mixing the changes in density are insensible to chain tacticity but the changes in volume and the energies of mixing do, which quantitatively confirms that both inter‐molecular interactions and free‐volumes mainly contribute to the observed phase behaviors. Such models and methods reported herein can be used to quickly optimize formulations of polymer blends. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 203–212  相似文献   

5.
6.
Force field parameters for polarizable coarse‐grained (CG) supra‐atomic models of liquid cyclohexane are proposed. Two different bead sizes were investigated, one representing two fine‐grained (FG) CH2r united atoms of the cyclohexane ring, and one representing three FG CH2r united atoms. Electronic polarizability is represented by a massless charge‐on‐spring particle connected to each CG bead. The model parameters were calibrated against the experimental density and heat of vaporization of liquid cyclohexane, and the free energy of cyclohexane hydration. Both models show good agreement with thermodynamic properties of cyclohexane, yet overestimate the self‐diffusion. The dielectric properties of the polarizable models agree very well with experiment. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
We describe the development of a coarse‐grained (CG) force field for nylon‐6 (polycaprolactam) and its application to the simulation of the structure and macromolecular dynamics within cylindrical fibres formed by this polymer, having diameters in the 14–28 nm range. Our CG model is based on the MARTINI force field for the non‐bonded interactions and on Boltzmann‐inverted gas‐phase atomistic simulations for intramolecular stretching and bending energies. The simulations are carried out on infinite, isolated nanofibres at temperatures of 300, 400 and 500 K, with different starting configurations. Starting from ordered chain‐extended configurations, we simulate the melting of the polymer in the nanofibres and, after cooling back to room temperature, its re‐crystallization in a chain‐folded lamellar configuration. This agrees with experimental observations on electrospun nylon‐6 nanofibres and demonstrated the suitability of the approach for the simulation of these systems. The effect of nanoscale confinement on the structure and dynamics of the polymer chains is extensively discussed.

  相似文献   


8.
Highly branched polymers such as polyamidoamine (PAMAM) dendrimers are promising macromolecules in the realm of nanobiotechnology due to their high surface coverage of tunable functional groups. Modeling efforts of PAMAM can provide structural and morphological properties, but the inclusion of solvents and the exponential growth of atoms with generations make atomistic simulations computationally expensive. We apply an implicit solvent coarse‐grained model, called the Dry Martini force field, to PAMAM dendrimers. The reduced number of particles and the absence of a solvent allow the capture of longer spatiotemporal scales. This study characterizes PAMAM dendrimers of generations one through seven in acidic, neutral, and basic pH environments. Comparison with existing literature, both experimental and theoretical, is done using measurements of the radius of gyration, moment of inertia, radial distributions, and scaling exponents. Additionally, ion coordination distributions are studied to provide insight into the effects of interior and exterior protonation on counter ions. This model serves as a starting point for future designs of larger functionalized dendrimers. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smoothly by changing the non‐bonded interactions gradually. To simulate complete equilibrium reactions, we allow the byproduct molecules attack and destroy created bonds. Modeling of such reactions are, for instance, important to study the pore formation due to the presence of e.g. water molecules or development of polymer morphology during the process of splitting off byproduct molecules. Another concept that could be studied is the degradation of polymeric materials, a very important topic in a recycling of polymer waste. We illustrate the method by simulating the polymerization of polyethylene terephthalate (PET) at the coarse‐grained level as an example of a polycondensation reaction with water as a byproduct. The algorithms are implemented in a publicly available software package and are easily accessible using a domain‐specific language that describes chemical reactions in an input configuration file. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
We present a web toolkit STructure mapper and Online Coarse‐graining Kit for setting up coarse‐grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, for example, all‐atom, to low, that is, coarse‐grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse‐graining packages, for example, Versatile Object‐oriented Toolkit for Coarse‐graining Applications and DL_CGMAP. Our second tool generates effective potentials for coarse‐grained simulations preserving the structural properties, for example, radial distribution functions, of the underlying higher resolution model. The required distribution functions can be provided by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse‐grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse‐graining web toolkit is available at http://stock.cmm.ki.si . © 2014 Wiley Periodicals, Inc.  相似文献   

11.
We present an algorithm to reconstruct atomistic structures from their corresponding coarse‐grained (CG) representations and its implementation into the freely available molecular dynamics (MD) program package GROMACS. The central part of the algorithm is a simulated annealing MD simulation in which the CG and atomistic structures are coupled via restraints. A number of examples demonstrate the application of the reconstruction procedure to obtain low‐energy atomistic structural ensembles from their CG counterparts. We reconstructed individual molecules in vacuo (NCQ tripeptide, dipalmitoylphosphatidylcholine, and cholesterol), bulk water, and a WALP transmembrane peptide embedded in a solvated lipid bilayer. The first examples serve to optimize the parameters for the reconstruction procedure, whereas the latter examples illustrate the applicability to condensed‐phase biomolecular systems. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

12.
13.
To explore the relationship between microscopic structure and viscoelastic properties of polyurea, a coarse‐grained (CG) model is developed by a structure matching method and validated against experiments conducted on a controlled, benchmark material. Using the Green‐Kubo method, the relaxation function is computed from the autocorrelation of the stress tensor, sampled over equilibrium MD simulations, and mapped to a real time scale established by matching self‐diffusion rates of atomistic and CG models. Master curves computed from the predicted stress relaxation function are then compared with dynamic mechanical analysis experiments mapped to a wide frequency range by time–temperature superposition, as well as measurements of ultrasonic shear wave propagation. Computational simulations from monodisperse and polydisperse configurations, representative of the benchmark polyurea, show excellent agreement with the experimental measurements over a multidecade range of loading frequency. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 797–810  相似文献   

14.
Molecular‐level understanding of the vesicular structure and formation process is beneficial for potential vesicle applications, especially in drug delivery. In this article, coarse‐grained molecular dynamics simulation was used to study the self‐assembly behavior of amphiphilic poly(acrylic acid)‐b‐polystyrene copolymers in water at different concentrations and PS/PAA block ratios. It was found that various spherical and tube‐like vesicles formed at PS/PAA 3:3 and 4:2. For spherical vesicles, analysis of vesicular structure indicated that the cavity size was influenced by copolymer concentration and wall thickness by the block ratio. Tube‐like vesicle was formed via the fusion of two spherical vesicles, and a key factor for this morphology is polymer movements between inner and outer layer. This simulation study identifies the key factors governing vesicle formation and structure, and provides a guidance to design and prepare various vesicles for wide applications in drug delivery. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1220–1226  相似文献   

15.
In this article, an implementation of steered molecular dynamics (SMD) in coarse‐grain UNited RESidue (UNRES) simulations package is presented. Two variants of SMD have been implemented: with a constant force and a constant velocity. The huge advantage of SMD implementation in the UNRES force field is that it allows to pull with the speed significantly lower than the accessible pulling speed in simulations with all‐atom representation of a system, with respect to a reasonable computational time. Therefore, obtaining pulling speed closer to those which appear in the atomic force spectroscopy is possible. The newly implemented method has been tested for behavior in a microcanonical run to verify the influence of introduction of artificial constrains on keeping total energy of the system. Moreover, as time dependent artificial force was introduced, the thermostat behavior was tested. The new method was also tested via unfolding of the Fn3 domain of human contactin 1 protein and the I27 titin domain. Obtained results were compared with Gø‐like force field, all‐atom force field, and experimental results. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
IBIsCO is a parallel molecular dynamics simulation package developed specially for coarse-grained simulations with numerical potentials derived by the iterative Boltzmann inversion (IBI) method (Reith et al., J Comput Chem 2003, 24, 1624). In addition to common features of molecular dynamics programs, the techniques of dissipative particle dynamics (Groot and Warren, J Chem Phys 1997, 107, 4423) and Lowe-Andersen dynamics (Lowe, Europhys Lett 1999, 47, 145) are implemented, which can be used both as thermostats and as sources of friction to compensate the loss of degrees of freedom by coarse-graining. The reverse nonequilibrium molecular dynamics simulation method (Müller-Plathe, Phys Rev E 1999, 59, 4894) for the calculation of viscosities is also implemented. Details of the algorithms, functionalities, implementation, user interfaces, and file formats are described. The code is parallelized using PE_MPI on PowerPC architecture. The execution time scales satisfactorily with the number of processors.  相似文献   

17.
The main aim of this study was to synthesis of poly (lactic acid) (PLA)‐graft‐glycidyl methacrylate (GMA) as well as its influence on the properties of PLA/banana fiber biocomposites. PLA‐graft‐GMA graft copolymer (GC) was synthesized by melt blending PLA with GMA using benzoyl peroxide and dicumyl peroxide as initiators. Graft copolymerization was confirmed by FTIR and 1H‐NMR spectroscopic studies. PLA/silane treated banana fiber (SiB) biocomposites with various GC concentrations were prepared by melt blending followed by injection molding techniques. The influence of GC content on the mechanical, thermal and moisture resistance properties of the composite was investigated. The addition of 15 wt% GC content in the biocomposite provided optimum tensile and flexural strength, which is attributed to the greater compatibility between fiber and PLA matrix. The thermal properties of biocomposites have been evaluated using thermogravimetric analysis which provided evidence of improved interfacial adhesion between SiB and PLA by the addition of GC. Additionally, GC enhanced the moisture absorption resistance of biocomposites. These results indicated that GC is indeed a good candidate as a compatibilizing agent to improve the compatibility in PLA/fiber biocomposites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video‐game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD‐simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting‐edge rendering techniques. We expect Pyrite‐generated images to appeal to students and non‐specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/ , released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
Molecular simulations restrained to single or multiple templates are commonly used in protein‐structure modeling. However, the restraints introduce additional barriers, thus impairing the ergodicity of simulations, which can affect the quality of the resulting models. In this work, the effect of restraint types and simulation schemes on ergodicity and model quality was investigated by performing template‐restrained canonical molecular dynamics (MD), multiplexed replica‐exchange molecular dynamics, and Hamiltonian replica exchange molecular dynamics (HREMD) simulations with the coarse‐grained UNRES force field on nine selected proteins, with pseudo‐harmonic log‐Gaussian (unbounded) or Lorentzian (bounded) restraint functions. The best ergodicity was exhibited by HREMD. It has been found that non‐ergodicity does not affect model quality if good templates are used to generate restraints. However, when poor‐quality restraints not covering the entire protein are used, the improved ergodicity of HREMD can lead to significantly improved protein models. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
We tested a variety of molecular dynamics simulation strategies in long‐duration (up to several nanoseconds) constant‐temperature simulations of liquid water under periodic boundary conditions. Such long durations are necessary to achieve adequate conformational sampling in simulations of membrane assemblies and other large biomolecular systems. Under a variety of circumstances, serious artifacts arise in the form of spurious collective behavior that becomes obvious only after the simulation has gone at least several hundred picoseconds. The potential energy of the system drops and the system changes from a liquid to an icy or glassy state. The underlying cause is accumulated center‐of‐mass motion of the system, coupled with velocity rescaling associated with constant‐temperature control. The velocity rescaling in the constant‐temperature algorithm reduces the thermal velocity as the net center‐of‐mass velocity grows, effectively causing the kinetic energy of the system to drain from thermal motions into coordinated motions. We found that the incidence and magnitude of the underlying artifactual motion leading to the spurious transition is mediated by: choice of method for computing electrostatic interactions; choice of ensemble; size of the simulation cell; SHAKE tolerance; frequency of nonbonded pairlist updating; and closeness of coupling to the temperature bath. The appearance of the spurious transition can be avoided by periodically subtracting net center‐of‐mass motion during the dynamics, or by improving the accuracy of the simulation by means of tightening SHAKE tolerance and updating nonbonded pairlists every timestep. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 121–131, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号