首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A reaction‐diffusion two‐predator‐one‐prey system with prey‐taxis describes the spatial interaction and random movement of predator and prey species, as well as the spatial movement of predators pursuing preys. The global existence and boundedness of solutions of the system in bounded domains of arbitrary spatial dimension and any small prey‐taxis sensitivity coefficient are investigated by the semigroup theory. The spatial pattern formation induced by the prey‐taxis is characterized by the Turing type linear instability of homogeneous state; it is shown that prey‐taxis can both compress and prompt the spatial patterns produced through diffusion‐induced instability in two‐predator‐one‐prey systems.  相似文献   

2.
In this paper, we investigate the dynamics of a time‐delay ratio‐dependent predator‐prey model with stage structure for the predator. This predator‐prey system conforms to the realistically biological environment. The existence and stability of the positive equilibrium are thoroughly analyzed, and the sufficient and necessary conditions for the stability and instability of the positive equilibrium are obtained for the case without delay. Then, the influence of delay on the dynamics of the system is investigated using the geometric criterion developed by Beretta and Kuang. 26 We show that the positive steady state can be destabilized through a Hopf bifurcation and there exist stability switches under some conditions. The formulas determining the direction and the stability of Hopf bifurcations are explicitly derived by using the center manifold reduction and normal form theory. Finally, some numerical simulations are performed to illustrate and expand our theoretical results.  相似文献   

3.
In this short note, we study a strongly coupled system of partial differential equations which models the dynamics of a two‐predator‐one‐prey ecosystem in which the prey exercises defense switching and the predators collaboratively take advantage of the prey's strategy. We prove the existence of global strong solutions. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
This paper deals with a generalized predator–prey system with cross-diffusion and homogeneous Neumann boundary condition, where the cross-diffusion is included in such a way that the prey runs away from the predator. We first give a priori estimate for positive steady states to the system. Then we obtain the non-existence result of non-constant positive steady states. Finally, we investigate the stability of constant equilibrium point and the existence of non-constant positive steady states. It is shown that the system admits a non-constant positive steady state provided that either of the self-diffusions is large or the cross-diffusion is small.  相似文献   

5.
Since population behaviors possess the characteristic of history memory, we, in this paper, introduce time fractional‐order derivatives into a diffusive Gause‐type predator‐prey model, which is time fractional‐order reaction‐diffusion equations and a generalized form of its corresponding first‐derivative model. For this kind of model, we prove the existence and uniqueness of a global positive solution by using the theory of evolution equations and the comparison principle of time fractional‐order partial differential equations. Besides, we obtain the stability and Hopf bifurcation of the Gause‐type predator‐prey model in the forms of the time fractional‐order ordinary equations and of the time fractional‐order reaction‐diffusion equations, respectively. Our results show that the stable region of the parameters in these 2 models can be enlarged by the time fractional‐order derivatives. Some numerical simulations are made to verify our results.  相似文献   

6.
This paper deals with the existence of traveling wave solutions for n‐dimensional delayed reaction–diffusion systems. By using Schauder's fixed point theorem, we establish the existence result of a traveling wave solution connecting two steady states by constructing a pair of upper–lower solutions that are easy to construct. As an application, we apply our main results to a four‐dimensional delayed predator–prey system and obtain the existence of traveling wave solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
We prove that the Volterra‐Gause system of predator‐prey type exhibits 2 kinds of zero‐Hopf bifurcations for convenient values of their parameters. In the first, 1 periodic solution bifurcates from a zero‐Hopf equilibrium, and in the second, 4 periodic solutions bifurcate from another zero‐Hopf equilibrium. This study is done using the averaging theory of second order.  相似文献   

8.
The Bogdanov‐Takens bifurcations of a Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting were studied. In the paper “Diff. Equ. Dyn. Syst. 20(2012), 339‐366,” Gupta et al proved that the Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting has rich dynamics. Some equilibria of codimension 1 and their bifurcations were discussed. In this paper, we find that the model has an equilibrium of codimensions 2 and 3. We also prove analytically that the model undergoes Bogdanov‐Takens bifurcations (cusp cases) of codimensions 2 and 3. Hence, the model can have 2 limit cycles, coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1 as the values of parameters vary. Moreover, several numerical simulations are conducted to illustrate the validity of our results.  相似文献   

9.
ABSTRACT. Predator‐prey relationships account for an important part of all interactions betweenspecies. In this paper we provide a microfoundation for such predator‐prey relations in afood chain. Basic entities of our analysis are representative organisms of species modeled similar to economic households. With prices as indicators of scarcity, organisms are assumed to behave as if they maximize their net biomass subject to constraints which express the organisms' risk of being preyed upon during predation. Like consumers, organisms face a ‘budget constraint’ requiring their expenditure on prey biomass not to exceed their revenue from supplying own biomass. Short‐run ecosystem equilibria are defined and derived. The net biomass acquired by the representative organism in the short term determines the positive or negative population growth. Moving short‐run equilibria constitute the dynamics of the predator‐prey relations that are characterized in numerical analysis. The population dynamics derived here turn out to differ significantly from those assumed in the standard Lotka‐Volterra model.  相似文献   

10.
A hyperbolic predator–prey model is proposed within the context of extended thermodynamics. The nature of the steady state solutions for the uniform and non‐uniform perturbations are analyzed. The existence of smooth traveling wave‐like solutions, related to the invasion of the predator population into a prey‐only state is discussed. Validation of the model in point is also accomplished by searching for numerical solutions of the system, which also points out limit cycles in the populations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is concerned with the global dynamics of a Holling‐Tanner predator‐prey model with periodic coefficients. We establish sufficient conditions for the existence of a positive solution and its global asymptotic stability. The stability conditions are first given in average form and afterward as pointwise estimates. In the autonomous case, the previous criteria lead to a known result.  相似文献   

12.
ABSTRACT. . This paper aims to study the effect of time‐delay and combined harvesting on a Michaelis‐Menten type ratio‐dependent predator‐prey system. Dynamical behaviors such as persistence, stability, bifurcation, et cetera, are studied critically. Computer simulations are carried out to illustrate our analytical findings.  相似文献   

13.
ABSTRACT. In this paper we develop a micro ecosystem model whose basic entities are representative organisms which behave as if maximizing their net offspring under constraints. Net offspring is increasing in prey biomass intake, declining in the loss of own biomass to predators and Allee's law applies. The organism's constraint reflects its perception of how scarce its own biomass and the biomass of its prey is. In the short‐run periods prices (scarcity indicators) coordinate and determine all biomass transactions and net offspring which directly translates into population growth functions. We are able to explicitly determine these growth functions for a simple food web when specific parametric net offspring functions are chosen in the micro‐level ecosystem model. For the case of a single species our model is shown to yield the well‐known Verhulst‐Pearl logistic growth function. With two species in predator‐prey relationship, we derive differential equations whose dynamics are completely characterized and turn out to be similar to the predator‐prey model with Michaelis‐Menten type functional response. With two species competing for a single resource we find that coexistence is a knife‐edge feature confirming Tschirhart's [2002] result in a different but related model.  相似文献   

14.
This paper is concerned with the existence of traveling waves to a predator–prey model with a spatiotemporal delay. By analyzing the corresponding characteristic equations, the local stability of a positive steady state and each of boundary steady states are established, and the existence of Hopf bifurcation at the positive steady state is also discussed. By constructing a pair of upper–lower solutions and by using the cross‐iteration method as well as the Schauder's fixed‐point theorem, the existence of a traveling wave solution connecting the semi‐trivial steady state and the positive steady state is proved. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with the behavior of positive solutions to a nonautonomous reaction‐diffusion system with homogeneous Neumann boundary conditions, which describes a two‐species predator‐prey system in which there is an infectious disease in prey. The sufficient condition on the permanence of the prey and the predator is established by combining the comparison principle with the results related to the corresponding ODE system. Some sufficient conditions for the spreading and vanishing of the disease are obtained. The global attractivity is also discussed by constructing a Lyapunov functional. Our results show that the disease is spreading if the transmission rate is suitably large, while if the transmission rate is small, the disease must be vanishing.  相似文献   

16.
This paper is concerned with a cross‐diffusion system arising in a Leslie predator–prey population model in a bounded domain with no flux boundary condition. We investigate sufficient condition for the existence and the non‐existence of non‐constant positive solution. We obtain that if natural diffusion coefficient of predator is large enough and cross‐diffusion coefficients are fixed, then under some conditions there exists non‐constant positive solution. Furthermore, we show that if natural diffusion coefficients of predator and prey are both large enough, and cross‐diffusion coefficients are small enough, then there exists no non‐constant positive solution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
We consider the two‐dimensional Vlasov‐Poisson system to model a two‐component plasma whose distribution function is constant with respect to the third space dimension. First, we show how this two‐dimensional Vlasov‐Poisson system can be derived from the full three‐dimensional model. The existence of compactly supported steady states with vanishing electric potential in a three‐dimensional setting has already been investigated in the literature. We show that these results can easily be adapted to the two‐dimensional system. However, our main result is to prove the existence of compactly supported steady states even with a nontrivial self‐consistent electric potential.  相似文献   

18.
This investigation accounts for epidemics spreading among interacting populations. The infective disease spreads among the prey, of which only susceptibles reproduce, while infected prey do not grow, recover, reproduce nor compete for resources. The model is general enough to describe a large number of ecosystems, on land, in the air or in the water. The main results concern the boundedness of the trajectories, the analysis of local and global stability, system's persistency and a threshold property below which the infection disappears. A sufficiently strong disease in the prey may avoid predators extinction and its presence can destabilize an otherwise stable predator‐prey configuration. The occurrence of transcritical, saddle‐node and Hopf‐bifurcations is also shown. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the periodic solution of a delayed Beddington‐DeAngelis (BD) type predator‐prey model with discontinuous control strategy. Firstly, the regularity and visibility analysis of the delayed predator‐prey model is carried out by using the principle of differential inclusion. Secondly, the positiveness and boundeness of the solution is discussed by employing the comparison theorem. Based on the boundary conditions of the model and the Mawhin‐like coincidence theorem, it is shown that the solution of the delayed BD system is asymptotically stable in finite time. Furthermore, it is found that there exists at least one periodic solution of the nonautonomous delayed predator‐prey model by using the principle of topological degree and set value mapping. Specially, when the nonautonomous delayed BD system degenerates into an autonomous system, some criteria are obtained to guarantee the convergence behavior of the harvesting solutions for the corresponding autonomous delayed BD system. Finally, numerical examples are given to demonstrate the applicability and effectiveness of main results. It is worthy to point out that the discontinuous control strategy is superior to the continuous harvesting policies adopted in existing literature.  相似文献   

20.
In this paper, a planar system of ordinary differential equations is considered, which is a modified Leslie‐Gower model, considering a Beddington‐DeAngelis functional response. It generates a complex dynamics of the predator‐prey interactions according to the associated parameters. From the system obtained, we characterize all the equilibria and its local behavior, and the existence of a trapping set is proved. We describe different types of bifurcations (such as Hopf, Bogdanov‐Takens, and homoclinic bifurcation), and the existence of limit cycles is shown. Analytic proofs are provided for all results. Ecological implications and a set of numerical simulations supporting the mathematical results are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号