首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the Gerdjikov‐Ivanov–type derivative nonlinear Schrödinger equation on the line. The initial value q(x,0) is given and satisfies the symmetric, nonzero boundary conditions at infinity, that is, q(x,0)→q± as x→±, and |q±|=q0>0. The goal of this paper is to study the asymptotic behavior of the solution of this initial value problem as t. The main tool is the asymptotic analysis of an associated matrix Riemann‐Hilbert problem by using the steepest descent method and the so‐called g‐function mechanism. We show that the solution q(x,t) of this initial value problem has a different asymptotic behavior in different regions of the xt‐plane. In the regions and , the solution takes the form of a plane wave. In the region , the solution takes the form of a modulated elliptic wave.  相似文献   

2.
We study the defocusing nonlinear Schrödinger equation in the quarter plane with asymptotically periodic boundary values. We use the unified transform method, also known as the Fokas method, and the Deift‐Zhou nonlinear steepest descent method to construct solutions in a sector close to the boundary whose leading behavior is described by a single exponential plane wave. Furthermore, we compute the subleading terms in the long‐time asymptotics of the constructed solutions.  相似文献   

3.
In this work, we discuss the coupled modified nonlinear Schrödinger (CMNLS) equation, which describe the pulse propagation in the picosecond or femtosecond regime of the birefringent optical fibers. By use of the Fokas approach, the initial‐boundary value problem for the CMNLS equation related to a 3×3 matrix Lax pair on the half‐line is to be analyzed. Assuming that the solution {u(x,t),v(x,t)} of CMNLS equation exists, we will prove that it can be expressed in terms of the unique solution of a 3×3 matrix Riemann‐Hilbert problem formulated in the plane of the complex spectral parameter λ. Moreover, we also get that some spectral functions s(λ) and S(λ) are not independent of each other but meet a global relationship.  相似文献   

4.
Local exact controllability of the one‐dimensional NLS (subject to zero‐boundary conditions) with distributed control is shown to hold in a H1‐neighbourhood of the nonlinear ground state. The Hilbert Uniqueness Method (HUM), due to Lions, is applied to the linear control problem that arises by linearization around the ground state. The application of HUM crucially depends on the spectral properties of the linearized NLS operator which are given in detail. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
We study the defocusing nonlinear Schrödinger (NLS) equation written in hydrodynamic form through the Madelung transform. From the mathematical point of view, the hydrodynamic form can be seen as the Euler–Lagrange equations for a Lagrangian submitted to a differential constraint corresponding to the mass conservation law. The dispersive nature of the NLS equation poses some major numerical challenges. The idea is to introduce a two‐parameter family of extended Lagrangians, depending on a greater number of variables, whose Euler–Lagrange equations are hyperbolic and accurately approximate NLS equation in a certain limit. The corresponding hyperbolic equations are studied and solved numerically using Godunov‐type methods. Comparison of exact and asymptotic solutions to the one‐dimensional cubic NLS equation (“gray” solitons and dispersive shocks) and the corresponding numerical solutions to the extended system was performed. A very good accuracy of such a hyperbolic approximation was observed.  相似文献   

6.
7.
In this paper, we deal with the multiplicity and concentration of positive solutions for the following fractional Schrödinger‐Kirchhoff type equation where ε>0 is a small parameter, is the fractional Laplacian, M is a Kirchhoff function, V is a continuous positive potential, and f is a superlinear continuous function with subcritical growth. By using penalization techniques and Ljusternik‐Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum.  相似文献   

8.
We consider the Cauchy problem for the third‐order nonlinear Schrödinger equation where and is the Fourier transform. Our purpose in this paper is to prove the large time asymptoitic behavior of solutions for the defocusing case λ > 0 with a logarithmic correction under the non zero mass condition Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We study the existence and concentration of positive solutions for the coupled nonlinear Schrödinger system under very weak assumptions on the two nonlinearities f and g by using the variational approach. In particular, no ‘Ambrosetti–Rabinowitz’ condition is required. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with the generalized nonlinear Schrödinger equation with parabolic law and dual‐power law. Abundant explicit and exact solutions of the generalized nonlinear Schrödinger equation with parabolic law and dual‐power law are derived uniformly by using the first integral method. These exact solutions are include that of extended hyperbolic function solutions, periodic wave solutions of triangle functions type, exponential form solution, and complex hyperbolic trigonometric function solutions and so on. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial DEs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In this paper, we study the multiplicity, stability, and quantitative properties of normalized standing waves for the nonlinear Schrödinger‐Poisson equation with a harmonic potential.  相似文献   

13.
In this paper, we study the following generalized quasilinear Schrödinger equation where N≥3, is a C1 even function, g(0) = 1 and g(s) > 0 for all s > 0. Under some suitable conditions, we prove that the equation has a ground state solution and infinitely many pairs ±u of geometrically distinct solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, we present, throughout two basic models of damped nonlinear Schrödinger (NLS)–type equations, a new idea to bound from above the fractal dimension of the global attractors for NLS‐type equations. This could answer the following open issue: consider, for instance, the classical one‐dimensional cubic nonlinear Schrödinger equation u t + i u x x + i | u | 2 u + γ u = f , f ?? 2 ( ? ) . “How can we bound the fractal dimension of the associate global attractor without the need to assume that the external forcing term f has some decay at infinity (that is belonging to some weighted Lebesgue space)?”  相似文献   

15.
In this paper, the existence of nontrivial solutions to a class of Schrödinger‐Poisson systems with critical and supercritical nonlinear terms is obtained via variational methods. By using the potential function, a compactness imbedding result is obtained. The properties of potential function play an important role for insuring variational setting.  相似文献   

16.
In this paper, we consider a nonlinear sublinear Schrödinger equation at resonance in . By using bounded domain approximation technique, we prove that the problem has infinitely many solutions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we investigate the fourth‐order nonlinear Schrödinger equation with parameterized nonlinearity that is generalized from regular cubic‐quintic formulation in optics and ultracold physics scenario. We find the exact solution of the fourth‐order generalized cubic‐quintic nonlinear Schrödinger equation through modified F‐expansion method, identifying the particular bright soliton behavior under certain external experimental setting, with the system's particular nonlinear features demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The purpose of this article is to apply nonconforming finite element(FE) to solve a generalized nonlinear Schrödinger equation. First, a new important property of nonconforming FE (see ( 2.3 ) of Lemma 2 below) is proved by use of BHX lemma and the integral identities techniques. Second, a linearized Crank‐Nicolson fully discrete scheme is constructed and the superclose error estimate of order for original variable u in broken H1‐norm is also derived by using the properties of element and the splitting argument for nonlinear terms, while previous works always only obtain convergent error estimates with this element. Furthermore, the global superconvergence is arrived at by the interpolated postprocessing technique. Finally, two numerical experiments are provided to confirm the theoretical analysis. Here, h is the subdivision parameter and τ is the time step.  相似文献   

19.
We perform a multiple scale analysis on the fourth order nonlinear Schrödinger equation in the Hamiltonian form together with the Hamiltonian function. We derive, as amplitude equations, Korteweg‐de Vries flow equations in the bi‐Hamiltonian form with the corresponding Hamiltonian functions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
We consider the existence of spots and stripes for a class of nonlinear Schrödinger‐type equations in the presence of nearly one‐dimensional localized potentials. Under suitable assumptions on the potential, we construct various types of waves that are localized in the direction of the potential and have single‐ or multihump, or periodic profile in the perpendicular direction. The analysis relies upon a spatial dynamics formulation of the existence problem, together with a center manifold reduction. This reduction procedure allows these waves to be realized as unipulse or multipulse homoclinic orbits, or periodic orbits in a reduced system of ordinary differential equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号