首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

2.
Two coordination polymers, namely {[Mn(2,4′‐bpdc)(bimb)(H2O)0.5] · 0.5H2O}n ( 1 ) and [Mn(4,4′‐bpdc)(bimb)]n · 2.5H2O ( 2 ) [2,4′‐bpdc = biphenyl‐2,4′‐dicarboxylate, 4,4′‐bpdc = biphenyl‐4,4′‐dicarboxylate, and bimb = 1,4‐bis(1‐imidazol‐yl)‐2,5‐dimethyl benzene], were hydrothermally synthesized by reactions of manganese(II) salt with the rigid ligand 1,4‐bis(1‐imidazol‐yl)‐2,5‐dimethyl benzene and isomeric biphenyl dicarboxylate ligands. Complex 1 has an unusual 6‐connected three‐dimensional (3D) architecture with point symbol (44.611). Complex 2 has also a 3D structure with two‐interpenetrated pcu topology with point symbol (412.63). Structural comparisons show that the positions of the carboxylate groups in the ligand backbone play an important role in governing the structural topologies of these complexes.  相似文献   

3.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1212 and μ2‐η1100 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

4.
Poly[bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) γ‐octamolybdate(VI) dihydrate], {(C10H16N4)2[Mo8O26]·2H2O}n, (I), and bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) α‐dodecamolybdo(VI)silicate tetrahydrate, (C10H16N4)2[SiMo12O40]·4H2O, (II), display intense hydrogen bonding between the cationic pyrazolium species and the metal oxide anions. In (I), the asymmetric unit contains half a centrosymmetric γ‐type [Mo8O26]4− anion, which produces a one‐dimensional polymeric chain by corner‐sharing, one cation and one water molecule. Three‐centre bonding with 3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium, denoted [H2Me4bpz]2+ [N...O = 2.770 (4)–3.146 (4) Å], generates two‐dimensional layers that are further linked by hydrogen bonds involving water molecules [O...O = 2.902 (4) and 3.010 (4) Å]. In (II), each of the four independent [H2Me4bpz]2+ cations lies across a twofold axis. They link layers of [SiMo12O40]4− anions into a three‐dimensional framework, and the preferred sites for pyrazolium/anion hydrogen bonding are the terminal oxide atoms [N...O = 2.866 (6)–2.999 (6) Å], while anion/aqua interactions occur preferentially viaμ2‐O sites [O...O = 2.910 (6)–3.151 (6) Å].  相似文献   

5.
A new 3d–4f heterometallic polymer, poly[[aqua‐μ3‐chlorido‐[μ3‐4‐(pyridin‐4‐yl)benzoato]tris[μ2‐4‐(pyridin‐4‐yl)benzoato]dicopper(I)erbium(III)] dihydrate], {[Cu2Er(C12H8NO2)4Cl(H2O)]·2H2O}n, was synthesized by the hydrothermal reaction of Er2O3, CuCl2·2H2O and 4‐(pyridin‐4‐yl)benzoic acid in the presence of HClO4. The asymmetric unit contains one Er3+ cation, two Cu+ cations, one Cl anion, four deprotonated 4‐(pyridin‐4‐yl)benzoate ligands, one coordinated aqua ligand and two solvent water molecules. This tubular one‐dimensional polymer is constructed from alternating clusters of europium(III)–water and copper(I) chloride bridged by 4‐(pyridin‐4‐yl)benzoate ligands. Extensive hydrogen‐bonding interactions involving both the coordinated and the solvent water molecules provide further stabilization to the structure.  相似文献   

6.
A novel two‐dimensional CoII coordination framework, namely poly[(μ2‐biphenyl‐4,4′‐diyldicarboxylato‐κ2O4:O4′){μ2‐bis[4‐(2‐methyl‐1H‐imidazol‐1‐yl)phenyl] ether‐κ2N3:N3′}cobalt(II)], [Co(C14H8O4)(C20H18N4O)]n, has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The crystal structure reveals that the compound has an achiral two‐dimensional layered structure based on opposite‐handed helical chains. In addition, it exhibits significant photocatalytic degradation activity for the degradation of methylene blue.  相似文献   

7.
Two new two‐dimensional lanthanide coordination polymers, namely poly[[tetra‐μ2‐acetato‐tetraaquabis(μ4‐biphenyl‐3,3′,5,5′‐tetracarboxylato)tetrakis(dimethylacetamide)tetraterbium(III)] pentahydrate], {[Tb4(C16H6O8)2(C2H3O2)4(C4H9NO)4(H2O)4]·5H2O}n, (1), and poly[[tetra‐μ2‐acetato‐tetraaquabis(μ5‐biphenyl‐3,3′,5,5′‐tetracarboxylato)tetrakis(dimethylacetamide)tetraeuropium(III)] tetrahydrate], {[Eu4(C16H6O8)2(C2H3O2)4(C4H9NO)4(H2O)4]·4H2O}n, (2), have been synthesized from biphenyl‐3,3′,5,5′‐tetracarboxylic acid (H4bpt) and Ln(NO3)3·6H2O (Ln = Tb and Eu) under solvothermal conditions. Single‐crystal X‐ray structure analysis shows that the two compounds are isostructural and crystallize in the monoclinic P21/n space group. The crystal structures are constructed from bpt4− ligands (as linkers) and {Ln22‐CH3COO)2} building units (as nodes), which topological analysis shows to be a (4,6)‐connected network with sql topology. Compounds (1) and (2) have been characterized by elemental analysis, IR spectroscopy, powder X‐ray diffraction (PXRD), thermogravimetric analysis (TGA) and fluorescence analysis in the solid state. In addition, a magnetic investigation shows the presence of antiferromagnetic interactions in compound (1).  相似文献   

8.
The assembly of metal–organic frameworks (MOFs) with metal ions and organic ligands is currently attracting considerable attention in crystal engineering and materials science due to their intriguing architectures and potential applications. A new three‐dimensional MOF, namely poly[[diaqua(μ8para‐terphenyl‐3,3′,5,5′‐tetracarboxylato)dizinc(II)] dimethylformamide disolvate monohydrate], {[Zn2(C22H10O8)(H2O)2]·2C3H7NO·H2O}n, was synthesized by the self‐assembly of Zn(NO3)2·6H2O and para‐terphenyl‐3,3′,5,5′‐tetracarboxylic acid (H4TPTC) under solvothermal conditions. The compound was structurally characterized by FT–IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction analysis. Each ZnII ion is located in a square‐pyramidal geometry and is coordinated by four carboxylate O atoms from four different TPTC4? ligands. Pairs of adjacent equivalent ZnII ions are bridged by four carboxylate groups, forming [Zn2(O2CR)4] (R = terphenyl) paddle‐wheel units. One aqua ligand binds to each ZnII centre along the paddle‐wheel axis. Each [Zn2(O2CR)4] paddle wheel is further linked to four terphenyl connectors to give a three‐dimensional framework with NBO‐type topology. The thermal stability and solid‐state photoluminescence properties of the title compound have also been investigated.  相似文献   

9.
Coordination polymers constructed from conjugated organic ligands and metal ions with a d10 electronic configuration exhibit intriguing properties for chemical sensing and photochemistry. A ZnII‐based coordination polymer, namely poly[aqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)(μ2‐4,4′‐bipyridine)dizinc(II)], [Zn2(C16H6O8)(C10H8N2)(H2O)2]n or [Zn2(m,m‐bpta)(4,4′‐bipy)(H2O)2]n, was synthesized from a mixture of biphenyl‐3,3′,5,5′‐tetracarboxylic acid [H4(m,m‐bpta)], 4,4′‐bipyridine (4,4′‐bipy) and Zn(NO3)2·6H2O under solvothermal conditions. The title complex has been structurally characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction analysis, and features a μ6‐coordination mode. The ZnII ions adopt square‐pyramidal geometries and are bridged by two synsyn carboxylate groups to form [Zn2(COO)2] secondary buildding units (SBUs). The SBUs are crosslinked by (m,m‐bpta)4? ligands to produce a two‐dimensional grid‐like layer that exhibits a stair‐like structure along the a axis. Adjacent layers are linked by 4,4′‐bipy ligands to form a three‐dimensional network with a {44.610.8}{44.62} topology. In the solid state, the complex displays a strong photoluminescence and an excellent solvent stability. In addition, the luminescence sensing results indicate a highly selective and sensitive sensing for Fe3+ ions.  相似文献   

10.
When {2,2′‐[(2‐methyl‐2‐nitropropane‐1,3‐diyl)diimino]diacetato}copper(II), [Cu(C8H13N3O6)], (I), was crystallized from a binary mixture of methanol and water, a monoclinic two‐dimensional water‐ and methanol‐solvated metal–organic framework (MOF) structure, distinctly different from the known orthorhombic one‐dimensional coordination polymer of (I), was isolated, namely catena‐poly[[copper(II)‐μ3‐2,2′‐[(2‐methyl‐2‐nitropropane‐1,3‐diyl)diimino]diacetato] methanol 0.45‐solvate 0.55‐hydrate], {[Cu(C8H13N3O6)]·0.45CH3OH·0.55H2O}n, (II). The monoclinic structure of (II) comprises centrosymmetric dimers stabilized by a dative covalent Cu2O2 core and intramolecular N—H...O hydrogen bonds. Each dimer is linked to four neighbouring dimers via symmetry‐related (opposing) pairs of bridging carboxylate O atoms to generate a `diamondoid' net or two‐dimensional coordination network. Tight voids of 166 Å3 are located between these two‐dimensional MOF sheets and contain a mixture of water and methanol with fractional occupancies of 0.55 and 0.45, respectively. The two‐dimensional MOF sheets have nanometre‐scale spacings (11.2 Å) in the crystal structure. Hydrogen‐bonding between the methanol/water hydroxy groups and a Cu‐bound bridging carboxylate O atom apparently negates thermal desolvation of the structure below 358 K in an uncrushed crystal of (II).  相似文献   

11.
Two CoII‐based coordination polymers, namely poly[(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato){μ2‐1,3‐bis[(1H‐imidazol‐1‐yl)methyl]benzene}dicobalt(II)], [Co2(C16H6O8)(C14H14N4)2]n or [Co2(o,m‐bpta)(1,3‐bimb)2]n ( I ), and poly[[aqua(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato){1,4‐bis[(1H‐imidazol‐1‐yl)methyl]benzene}dicobalt(II)] dihydrate], {[Co2(C16H6O8)(C14H14N4)2(H2O)2]·4H2O}n or {[Co2(o,m‐bpta)(1,4‐bimb)2(H2O)2]·4H2O}n ( II ), were synthesized from a mixture of biphenyl‐2,2′,5,5′‐tetracarboxylic acid, i.e. [H4(o,m‐bpta)], CoCl2·6H2O and N‐donor ligands under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction analysis. The bridging (o,m‐bpta)4? ligands combine with CoII ions in different μ4‐coordination modes, leading to the formation of one‐dimensional chains. The central CoII atoms display tetrahedral [CoN2O2] and octahedral [CoN2O4] geometries in I and II , respectively. The bis[(1H‐imidazol‐1‐yl)methyl]benzene (bimb) ligands adopt trans or cis conformations to connect CoII ions, thus forming two three‐dimensional (3D) networks. Complex I shows a (2,4)‐connected 3D network with left‐ and right‐handed helical chains constructed by (o,m‐bpta)4? ligands. Complex II is a (4,4)‐connected 3D novel network with ribbon‐like chains formed by (o,m‐bpta)4? linkers. Magnetic studies indicate an orbital contribution to the magnetic moment of I and II due to the longer Co…Co distances. An attempt has been made to fit the χMT results to the magnetic formulae for mononuclear CoII complexes, the fitting indicating the presence of weak antiferromagnetic interactions between the CoII ions.  相似文献   

12.
The title compounds, dimethylammonium 2‐{4‐[1‐(4‐carboxymethoxyphenyl)‐1‐methylethyl]phenoxy}acetate, C2H8N+·C19H19O6, (I), and 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid–4,4′‐bipyridine (1/1), C19H20O6·C10H8N2, (II), are 1:1 adducts of 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid (H2L) with dimethylammonium or 4,4′‐bipyridine. The component ions in (I) are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into continuous two‐dimensional layers parallel to the (001) plane. Adjacent layers are stacked via C—H...O hydrogen bonds into a three‐dimensional network with an –ABAB– alternation of the two‐dimensional layers. In (II), two H2L molecules, one bipy molecule and two half bipy molecules are linked by O—H...N hydrogen bonds into one‐dimensional chains and rectanglar‐shaped rings. They are assembled viaπ–π stacking interactions and C—H...O hydrogen bonds into an intriguing zero‐dimensional plus one‐dimensional poly(pseudo)rotaxane motif.  相似文献   

13.
A series of two‐dimensional (2D) coordination polymers (CPs), namely poly[[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)digadolinium(III)] N,N‐dimethylacetamide monosolvate], {[Gd2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]·C4H9NO}n ( CP1 ), poly[[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)didysprosium(III)] N,N‐dimethylacetamide monosolvate], {[Dy2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]·C4H9NO}n ( CP2 ), poly[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)dineodymium(III)], [Nd2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]n ( CP3 ), poly[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)disamarium(III)], [Sm2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]n ( CP4 ), has been synthesized from rigid biphenyl‐3,3′,5,5′‐tetracarboxylic acid under solvothermal conditions. Their structures have been determined by single‐crystal X‐ray diffraction analyses, elemental analyses, IR spectra, powder X‐ray diffraction and thermogravimetric analyses, and CP1 – CP4 crystallize in the monoclinic space group P21/n. CP1 – CP4 are isomorphous and feature similar 2D double layers, which are further extended via interlayer hydrogen‐bonding interactions into a three‐dimensional (3D) supramolecular structure. Hydrogen‐bonding interactions between N,N‐dimethylacetamide molecules and carboxylate O atoms strengthen the packing of the layers. The organic ligands interconnect with metal ions to generate 2D layered structures with a (4,4)‐connected net having {44.62} topology. CP1 has been investigated for its magnetic properties and magnetic susceptibility measurements were carried out in the range 2.0–300 K. The results of the magnetic measurements show weak antiferromagnetic coupling between the GdIII ions in CP1 . Moreover, the strong luminescence of CP2 and CP4 can be selectively quenched by the Fe3+ ion and toxic solvents (e.g. acetone).  相似文献   

14.
Two new metal–organic frameworks (MOFs), namely, three‐dimensional poly[diaquabis{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}bis(μ2‐glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O}n or {[Ni2(Glu)2(1,4‐mbix)2(H2O)2]·H2O}n, ( I ), and two‐dimensional poly[[{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}(μ2‐glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O}n or {[Zn(Glu)(1,4‐mbix)]·4H2O}n ( II ), have been synthesized hydrothermally using glutarate (Glu2?) mixed with 1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene (1,4‐mbix), and characterized by single‐crystal X‐ray diffraction, IR and UV–Vis spectroscopy, powder X‐ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF ( I ) shows a 4‐connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF ( II ) displays a two‐dimensional 44‐ sql network with one‐dimensional water chains penetrating the grids along the c direction. The solid‐state photoluminescence analysis of ( II ) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O72? ions in aqueous solution.  相似文献   

15.
Metal–organic frameworks (MOFs) have attracted much interest in the fields of gas separation and storage, catalysis synthesis, nonlinear optics, sensors, luminescence, magnetism, photocatalysis gradation and crystal engineering because of their diverse properties and intriguing topologies. A Cu–MOF, namely poly[[(μ2‐succinato‐κ2O:O′){μ2‐tris[4‐(1,2,4‐triazol‐1‐yl)phenyl]amine‐κ2N:N′}copper(II)] dihydrate], {[Cu(C4H4O4)(C24H18N10)]·2H2O}n or {[Cu(suc)(ttpa)]·2H2O}n, (I), was synthesized by the hydrothermal method using tris[4‐(1,2,4‐triazol‐1‐yl)phenyl]amine (ttpa) and succinate (suc2?), and characterized by IR, powder X‐ray diffraction (PXRD), luminescence, optical band gap and valence band X‐ray photoelectron spectroscopy (VB XPS). Cu–MOF (I) shows a twofold interpenetrating 4‐coordinated three‐dimensional CdSO4 topology with point symbol {65·8}. It presents good photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) under visible‐light irradiation. A photocatalytic mechanism was proposed and confirmed.  相似文献   

16.
By employing the conjugated bithiophene ligand 5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene (bibp), which can exhibit trans and cis conformations, two different CuII coordination polymers, namely, poly[[μ‐5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene‐κ2N:N′](μ2‐4,4′‐oxydibenzoato‐κ2O:O′)copper(II)], [Cu(C14H8O5)(C14H10N4S2)]n or [Cu(bibp)(oba)]n, (I), and catena‐poly[μ‐aqua‐bis[μ‐5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene‐κ2N:N′]bis(μ3‐4,4′‐oxydibenzoato)‐κ3O:O′:O′′;κ4O:O′,O′′:O′‐dicopper(II)], [Cu2(C14H8O5)2(C14H10N4S2)(H2O)]n or [Cu2(bibp)(oba)2(H2O)]n, (II), have been prepared through one‐pot concomitant crystallization and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, elemental analysis, powder X‐ray diffraction (PXRD) and thermogravimetric (TG) analysis. Single‐crystal X‐ray diffraction indicates that the most interesting aspect of the structure is the existence of sole trans and cis conformations of the bibp ligand in a single net of (I) and (II), respectively. Compound (I) displays a threefold interpenetrating three‐dimensional framework with a 4‐connected {65.8} cds topology, whereas (II) features a one‐dimensional chain structure. In the crystal of (II), the polymeric chains are further extended through C—H…O hydrogen bonds and C—H…π interactions into a three‐dimensional supramolecular architecture. In addition, strong intramolecular O—H…O hydrogen bonds formed between the bridging water molecules and the carboxylate O atoms improve the stability of the framework of (II). Furthermore, solid‐state UV–Vis spectroscopy experiments show that compounds (I) and (II) exhibit optical band gaps which are characteristic for optical semiconductors, with values of 2.70 and 2.26 eV, respectively.  相似文献   

17.
Two zinc(II) coordination polymers, namely [Zn2(bptc)(DMF)2(H2O)]n ( 1 ) and [Zn(bptc)0.5(DMA)]n ( 2 ) (H4bptc = biphenyl‐3,3′,5,5′‐tetracarboxylic acid, DMF = N,N′‐dimethylformamide, DMA = N,N′‐dimethylacetamide), were obtained under solvothermal conditions by varying the reaction solvents. Single crystal X‐ray diffraction analyses revealed that compound 1 features a 3D PtS type framework based on dinuclear [Zn2O(COO)2] subunits and compound 2 features a 3D lvt type framework based on paddle‐wheel shaped [Zn2(COO)4] subunits. Moreover, the luminescent and thermal stabilities of these two compounds were investigated.  相似文献   

18.
A one‐dimensional coordination polymer, namely catena‐poly[[aquapyridinecadmium(II)]‐μ3‐{4,4′‐[(2,4,6‐trimethyl‐1,3‐phenylene)bis(methylene)]dibenzoato}], [Cd(C25H22O4)(C5H5N)(H2O)]n, has been synthesized by a biphasic solvothermal reaction. The CdII cation is located in a CdO5N six‐coordinated environment. The trans 4,4′‐[(2,4,6‐trimethyl‐1,3‐phenylene)bis(methylene)]dibenzoate ligand connects the CdII cations to form a one‐dimensional ribbon incorporating centrosymmetric [Cd2(COO)2] secondary building units. Inter‐ribbon O—H...O hydrogen bonds extend the one‐dimensional ribbons into a two‐dimensional sheet. No π–π interactions are observed. Comparing products synthesized using a different method, it was found that biphasic solvothermal conditions play a crucial role in obtaining large well‐shaped single crystals; only intractable precipitates were obtained by the traditional single‐phase solvothermal method.  相似文献   

19.
Two new Zn2+‐based metal–organic frameworks (MOFs) based on biphenyl‐2,2′,5,5′‐tetracarboxylic acid, i.e. H4(o,m‐bpta), and N‐donor ligands, namely, poly[[(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis{[1,3‐phenylenebis(methylene)]bis(1H‐imidazole)}dizinc(II)] dimethylformamide monosolvate dihydrate], {[Zn2(C16H6O8)(C14H14N4)2]·C3H7NO·2H2O}n or {[Zn2(o,m‐bpta)(1,3‐bimb)2]·C3H7NO·2H2O}n ( 1 ) {1,3‐bimb = [1,3‐phenylenebis(methylene)]bis(1H‐imidazole)}, and poly[[(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis{[1,4‐phenylenebis(methylene)]bis(1H‐imidazole)}dizinc(II)] monohydrate], {[Zn2(C16H6O8)(C14H14N4)2]·H2O}n or {[Zn2(o,m‐bpta)(1,4‐bimb)2]·H2O}n ( 2 ) {1,4‐bimb = [1,4‐phenylenebis(methylene)]bis(1H‐imidazole)}, have been synthesized under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction analysis. Structurally, the (o,m‐bpta)4? ligands are fully deprotonated and combine with Zn2+ ions in μ4‐coordination modes. Complex 1 is a (3,4)‐connected porous network with honeycomb‐like [Zn2(o,m‐bpta)]n sheets formed by 4‐connected (o,m‐bpta)4? ligands. Complex 2 exhibits a (2,4)‐connected network formed by 4‐connected (o,m‐bpta)4? ligands linking Zn2+ ions in left‐handed helical chains. The cis‐configured 1,3‐bimb and 1,4‐bimb ligands bridge Zn2+ ions to form multi‐membered [Zn2(bimb)2] loops. Optically, the complexes show strong fluorescence and display larger red shifts compared to free H4(o,m‐bpta). Complex 2 shows ferroelectric properties due to crystallizing in the C2v polar point group.  相似文献   

20.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号