首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, zinc oxide nanoparticles were treated with aminopropyl trimethoxy silane‐coupling agent and used as a new kind of reinforcement for a typical high performance bisphenol‐A‐based phthalonitrile resin. The resulted nanocomposites were characterized for their mechanical, thermal, and optical properties. Results from the tensile test indicated that the tensile strength and modulus as well as the toughness state of the matrix were all enhanced with the increasing of the nanoparticles amount. Thermogravimetric analysis showed that the starting decomposition temperatures and the residual weight at 800°C were highly improved upon adding the nanofillers. At 6 wt% nanoloading, the glass transition temperature and the storage modulus were considerably enhanced reaching about 359°C and 3.7 GPa, respectively. The optical tests revealed that the neat resin possesses excellent UV‐shielding properties, which were further enhanced by adding the nanofillers. Furthermore, the fractured surfaces of the nanocomposites analyzed by scanning electron microscope exhibited homogeneous and rougher surfaces compared with that of the pristine resin. Finally, the good dispersion of the reinforcing phase into the matrix was confirmed by a high resolution transmission electron microscope. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Mesoporous diatomite platelets were employed to synthesize different polystyrene/diatomite composites by in situ polymerization of styrene via simultaneous reverse and normal techniques of atom transfer radical polymerization. Furrier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning and transmission electron microscopy, gas and size exclusion chromatography were used to examine characteristics of polymer and composite. Addition of 3 wt% pristine mesoporous diatomite leads to increase of conversion from 79 to 93%, while control over molecular weight characteristics become worse.  相似文献   

3.
Multi-walled carbon nanotubes (CNTs) were non-covalently functionalized by surface wrapping of poly(sodium 4-styrenesulfonate) (PSS) with the aid of ultrasound. The functionalized CNTs were incorporated into poly(butylene succinate) (PBS) through solution coagulation to fabricate CNTs filled PBS nanocomposites. The morphologies of the PBS/CNT nanocomposites were studied by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the effect of loading of functionalized CNT on the rheological behavior, electrical conductivity and mechanical properties of the nanocomposites was investigated systemically. SEM observation indicates that functionalized CNTs dispersed in PBS matrix without obvious aggregation and showed good interfacial adhesion with the PBS phase. TEM observation reveals that a CNT network was formed when the loading of CNTs increased from 0.1 to 0.3 wt%. Rheological investigation indicates the formation of a CNT network with a percolation threshold of only 0.3 wt%. Significant improvement in electrical conductivity occurred at CNT loading of 0.3 wt%, with the value of electrical conductivity increasing by six orders of magnitude compared to neat PBS. Differential scanning calorimetry indicates that the melt crystallization temperature of PBS was improved by ∼14 °C with addition of only 0.05 wt% functionalized CNTs. Tensile tests indicate that both the yield strength and Young's modulus of PBS were apparently reinforced by incorporation of functionalized CNTs, while the elongation at break was reduced gradually.  相似文献   

4.
The long-term application of phosphorus-containing or nitrogen-containing water treatment agents can easily lead to the eutrophication of water bodies. Here, a random copolymer IA/SMAS was synthesized by itaconic acid (IA) and sodium methacrylate sulfonate (SMAS) monomer by the aqueous polymerization method. The optimal synthesis conditions were as follows: a raw material mass ratio (IA:SMAS) of 2:1, a temperature of 95 °C and a reaction time of 6 h. In addition, ammonium persulfate and isopropanol were both added at 5 % of the total raw material mass. The copolymer IA/SMAS was characterized by infrared spectroscopy (IR), elemental analysis, nuclear magnetic resonance (NMR), field emission scanning electron microscopy (FESEM), and EDS. Its molecular weight and distribution were analyzed by gel chromatography (GPC). Static methods were used to evaluate copolymers and their performance in synergy with electrostatic fields. The scale inhibition mechanism of the copolymer and its synergistic effect with electrostatic field were also studied by a scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the copolymer had excellent scale inhibition performance for calcium carbonate and good dispersion effect on iron oxide. The addition of the electrostatic field improved the scale inhibition performance of IA/SMAS copolymer by 16 %. Thus, the copolymer is a phosphorus-free and nitrogen-free water treatment agent that achieves excellent performance and can significantly disrupt the surface morphology and crystalline structures of crystals.  相似文献   

5.
《先进技术聚合物》2018,29(1):407-416
Graphene nanoplatelets are promising candidates for enhancing the electrical conductivity of composites. However, because of their poor dispersion, graphene nanoplatelets must be added in large amounts to achieve the desired electrical properties, but such large amounts limit the industrial application of graphene nanoplatelets. Multi‐walled carbon nanotubes also possess high electrical conductivity accompanied by poor dispersion. Therefore, a synergistic effect was generated between graphene nanoplatelets and multi‐walled carbon nanotubes and used for the first time to prepare antistatic materials with high‐density polyethylene via 1‐step melt blending. The synergistic effect makes it possible to significantly improve the electrical properties by adding a small amount of untreated graphene nanoplatelets and multi‐walled carbon nanotubes and increases the possibility of using graphene nanoplatelets in industrial applications. When only 1 wt% graphene nanoplatelets and 0.5 wt% multi‐walled carbon nanotubes were added, the surface and volume resistivity values of the composites were much lower than those of the composites that were only added 3 wt% graphene nanoplatelets. Additionally, as a result of the synergistic effect of graphene nanoplatelets and multi‐walled carbon nanotubes, the composites met the requirements for antistatic materials.  相似文献   

6.
Sustainable functional polymer nanocomposites from renewable resources are extremely promising materials that can provide the next-generation of lightweight, multifunctional materials for several applications including energy storage, automotive, construction, defense, aerospace, consumer products, biomedical and functional coatings to name few. There is limited information on the use of sustainable polymers and graphene nanoplatelets (GNs), as well as the combinations of these two can provide reduced water permeability or enhanced electrical conductivity and improved thermal properties, and so on. Building upon this hypothesis, biobased poly(butylene succinate)/few-layer GN nanocomposites were prepared via a solventless melt-blending technique. Different characterization techniques such as differential scanning calorimetery, thermogravimetric analysis, dynamic mechanical analysis, dielectric spectroscopy, X-ray diffraction (XRD) and hot stage optical microscopy were used to study the thermal and structural characteristics. The melt blending was characterized by torque and temperature curves which showed that torque was reduced by up to 15 Nm, and melt temperature was improved by up to 5 °C. The improved crystallization of the composites in low concentrations of GN was observed. Graphene has been found to increase the crystallization temperature up to 10 °C and yielded pronounced spherulite structure, whereas peak shift was observed in XRD. High filler loading from 0.5 to 6.0 wt% was used to obtain more insights for few-layer graphene applications for thermoplastic polymer processing applications.  相似文献   

7.
In this study a new melamine-terephthaldehyde resin modified graphene oxide was synthesized and used as a reinforcement of poly(vinyl chloride) (PVC). Characterization, morphology, thermal and mechanical properties of the nanocomposites were examined by means of attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction, field emission-scanning electron microscopy, thermogravimetric analysis, differential scanning calorimeter and tensile properties. The first hydrochloric acid releasing data of poly(vinyl chloride) was removed by incorporation of the modified graphene oxide as compare to the neat polymer. The temperatures at 2 wt% losses, main decomposition temperatures, maximum decomposition temperatures, also shift to higher temperature in the corresponding nanocomposites as compared to the neat PVC. The tensile strength and elongation at break of the nanocomposite films was increased as compared to the neat PVC. The interesting results in crystallinity of PVC were observed with adding 5 wt% of the modified graphene oxide.  相似文献   

8.
In this paper, our research team has synthesized new nanocomposites by simple precipitation/ignition method and using low-cost chemicals. Hence, β-cobalt hydroxide/hydrohausmannite/ramsdellitee/spertiniite and tenorite/cobalt manganese oxide/manganese oxide new nanocomposites were synthesized by precipitation of Mn(II)/Co(II)/Cu(II) solution using sodium hydroxide and ignition of precipitate at 700 °C for 3 hrs, respectively. The synthesized nanocomposites were characterized using different instruments such as energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), nitrogen gas sorption analyzer, and UV–vis spectrophotometer. Energy dispersive X-ray analysis revealed that the nanocomposite formed as a result of precipitation consists of copper, cobalt, manganese, and oxygen where the weight percentages are equal to 31.73, 27.01, 17.26, and 24 %, respectively. Also, the nanocomposite formed as a result of ignition consists of copper, cobalt, manganese, and oxygen where the weight percentages are equal to 31.26, 23.87, 14.56, and 30.31 %, respectively. Transmission electron microscope revealed that the nanocomposites formed as a result of precipitation and ignition consist of polyhedral and spherical shapes with an average diameter of 34.50 and 28.56 nm, respectively. The synthesized nanocomposites were used as new photocatalysts for the efficient degradation of methylene blue dye. 0.05 g of the synthesized nanocomposites degrade 100 % of 50 mL of 15 mg/L of methylene blue dye solution within 25 min in the presence of H2O2 under UV light.  相似文献   

9.
Polymer‐derived methods are one of the most important tools for the synthesis of ceramics with a finely dispersed microstructure. In this study, a soluble and meltable ZrC/C pre‐ceramic polymer, P‐DACZ, (which would later exhibit a high ceramic yield of 71 wt%) was synthesized via radical polymerization. By adding low molecular weight polycarbosilane in any proportion during the radical polymerization process of P‐DACZ, a soluble and meltable ZrC/SiC/C pre‐ceramic precursor, PCS‐DACZ (which would later exhibit a high ceramic yield of >80 wt%) was synthesized. After annealing at 1400 °C under an argon flow, the precursors converted into bulk ZrC/C and ZrC/SiC/C ceramic nanocomposites. The ZrC nanoparticles could resist any grain growth when heat‐treated at temperatures above 1800 °C because the C or SiC matrix prevented long‐range atomic diffusion of zirconium. Such ceramic nanocomposites would be suitable for structural and (multi)functional applications at harsh environments with high temperatures.  相似文献   

10.
In order to obtain epoxy nanocomposites with excellent mechanical properties at cryogenic temperature, an efficient method to functionalize graphene nanoplatelets (GNPs) is proposed. Through a simple dip-coating procedure, the GNPs were first functionalized with deposition of polydopamine coating (PDA@GNPs). Then, using polydopamine as a bridge, the PDA@GNPs were modified with amine groups after polyetheramine T403 grafting (T403-PDA@GNPs). Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy analyses proved the successful functionalization of PDA and polyetheramine T403 on the surface of GNPs. Adding 0.1 wt% T403-PDA@GNPs significantly improved the cryogenic tensile strength and impact strength of the epoxy nanocomposites by 34.5% and 64.5%, which showed greater reinforcing effect than the pristine GNPs (12.6% and 19.1%) and PDA@GNPs (26.3% and 50.1%). The results of dynamic mechanical analysis and scanning electron microscopy observations indicated that the PDA and further polyetheramine T403 functionalization improved the interfacial interactions between GNPs and matrix, which ensured the much improved mechanical properties.  相似文献   

11.
Magnesium hydroxide (MH) was surface modified by bis [3‐(triethoxysilyl) propyl] tetrasulfide (Si‐69) in order to improve its compatibility with ethylene‐vinyl acetate (EVA) copolymer substrate. The modified MH (SMH) was then introduced to EVA through melt blending. The flammability was evaluated by limiting oxygen index (LOI), vertical burning test and cone calorimeter; 40 wt% MH/SMH will lift LOI from 17.9 in EVA to 22.3/23.3, respectively. In cone test, the peak heat release rate (PHRR) of EVA is 1382 kW/m2 and reduced sharply to 601/489 kW/m2 for 40 wt% MH/SMH adding, respectively. The mechanical properties were tested by a drawing machine. The elongation at break dropped almost 7 times by the addition of 40 wt% MH, from 825% in EVA dived to 124%, whereas up to 745% by the addition of 40 wt% SMH. The morphology observation by scanning electron microscopy (SEM) indicated the dispersion of surface modified MH in EVA was remarkably improved than that of MH. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Graphene nanoplatelets have been applied as the support to electrodeposit monometallic Au and Pd nanoparticles as well as bimetallic Au–Pd nanoparticles. These nanoparticles have been characterized with scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, and electrochemical techniques. They are further utilized as the catalysts for electrochemical oxidation of hydrazine. The oxidation peak potential is − 0.35 and 0.53 V (vs. SCE) when monometallic Pd and Au nanoparticle are used as the catalysts. When bimetallic nanoparticles are applied as the catalyst, their composition affects the peak potential and peak current for the oxidation of hydrazine. Higher oxidation current is achieved when bimetallic Au–Pd nanoparticles with an atomic ratio of 3:1 are deposited on graphene nanoplatelets. Metal nanoparticle-loaded graphene nanoplatelets are thus novel platforms for electrocatalytic, electroanalytical, environmental, and related applications.  相似文献   

13.
In this study, the synthesis of ZnO/SiO2 nanocomposites using bamboo leaf ash (BLA) and tested their photocatalytic activity for rhodamine B decolorization have been conducted. The nanocomposites were prepared by the sol–gel reaction of zinc acetate dihydrate, which was used as a zinc oxide precursor, with silica gel obtained from the caustic extraction of BLA. The effect of the Zn content (5, 10, and 20 wt%) on the physicochemical characteristics and photocatalytic activity of the nanocomposites was investigated. The results of X-ray diffraction, scanning electron microscopy, gas sorption, and transmission electron microscopy characterization confirmed the mesoporous structure of the composites containing nanoflower-like ZnO (wurtzite) nanoparticles of 10–30 nm in size dispersed on the silica support. Further, the nanocomposites were confirmed to be composed of ZnO/SiO2 by X-ray photoelectron spectroscopy analysis. Meanwhile, diffuse-reflectance UV–visible spectrophotometry analysis of the nanocomposites revealed band gap energies of 3.38–3.39 eV. Of the tested nanocomposites, that containing 10 wt% Zn exhibited the highest decolorization efficiency (99%) and fastest decolorization rate. In addition, the degradation efficiencies were not reduced significantly after five repeated runs, demonstrating the reusability of the nanocomposite catalysts. Therefore, the ZnO/SiO2 nanocomposite obtained from BLA is a promising reusable photocatalyst for the degradation of dye-polluted water.  相似文献   

14.
Novel nanocomposites, consisting of conducting poly(3,4-ethylenedioxythiophene) [PEDOT] and graphene nanoplatelets [GNPs], were successfully synthesized by in-situ chemical-oxidative polymerization of 3,4-ethylenedioxythiophene [EDOT] using ammonium peroxydisulfate as an oxidizing agent. The formation of PEDOT and its incorporation onto the surface of GNPs were confirmed by scanning electron microscopy, Fourier-transform infrared-spectroscopy, and X-ray diffraction. The optical energy band gap, Egopt, was determined by UV–Vis spectroscopy. Dielectric constant and loss as well as AC electrical conductivity, σAC, were determined in the frequency range from 10 Hz to 8 MHz. The PEDOT-GNP nanocomposites were found to have extremely large dielectric constant, ε′, significantly high σAC, and narrow Egopt values. In particular, PEDOT-GNP nanocomposite with 10 wt% GNP has a gigantic dielectric constant of the order of 9 × 105 at 1 kHz and a narrow optical energy band gap of 1.26 eV. The ε′ values (108 to 105 in the frequency range from 10 Hz to 5 MHz) of PEDOT-10 wt% GNP are the highest among those reported in the literature for carbon based polymer nanocomposites. The massive quantity of micro-capacitors formed in the nanocomposites, prior to the creation of conductive networks, leads to the gigantic dielectric properties. The ε′ and σAC values of PEDOT-10 wt% GNP nanocomposite were about 90 and 400 times larger than those of pure PEDOT. Our method should be particularly promising in the development of new materials for high energy storage applications.  相似文献   

15.
This paper presents the influence of Aluminum Nitride (AlN) nanoparticles on the electrical and material properties of epoxy resin (EP). The EP/AlN nanocomposites with different concentrations of nano-AlN fillers are prepared. The dispersion of the nano-AlN particles in the composites is analyzed by a field emission scanning electron microscope (FESEM). The electrical properties are investigated by the space charge and DC conductivity measurements, whereas the material properties are studied by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The results show that the homo-charge accumulation appears near both electrodes during the polarization, but there are limited negative charges left near both electrodes in the depolarization for the pure EP sample. There is no space charge accumulation in the 1 wt% and 2 wt% EP/AlN nanocomposites. The electric field distortion of the pure EP sample is 20%. Moreover, the electric field distortion initially decreases with the increase of the nano-AlN content, but it increases for the 2 wt% nano-AlN sample. Temperature has a dominant influence on the DC conductivity of the EP/AlN nanocomposites comparing to the pure EP. However, the DC conductivity of the nanocomposites becomes stable at high temperatures. It is also found that the weight loss of the samples decreases with the addition of the nano-AlN and the 1 wt% nano-AlN sample has the highest glass transition temperature. It is elucidated that the high apparent mobility and activation energy facilitate the space charge transport and suppressing the space charge accumulation. Furthermore, the nano-AlN filler can increase the trap level and trap energy density of the deep traps in the sample. The dielectric loss of the EP at high frequency is reduced with the content of 1 wt% nano-AlN. Furthermore, the addition of the nano-AlN can improve the thermal stability of the EP. The 1 wt% nano-AlN sample has the superior electrical insulation and material performance amongst the tested materials.  相似文献   

16.

Pyrolysis is a commonly used method for the recovery of used lubricating oil (ULO), which should be kinetically improved by a catalyst, due to its high level of energy consumption. In this research, the catalytic effects of carbon nanotube (CNT) and graphene nanoplatelets on the pyrolysis of ULO were studied through thermogravimetric analysis. First, the kinetic parameters of ULO pyrolysis including activation energy were calculated to be 170.12 and 167.01 kJ mol?1 by FWO and KAS methods, respectively. Then, the catalytic effects of CNT and graphene nanoplatelets on pyrolysis kinetics were studied. While CNT had a negligible effect on the pyrolysis process, graphene nanoplatelets significantly reduced the temperature of maximum conversion during pyrolysis from 400 to 350 °C, due to high thermal conductivity and homogenous heat transfer in the pyrolysis process. On the other hand, graphene nanoplatelets maximized the rate of conversion of highly volatile components at lower temperatures (<?100 °C), which was mainly due to the high affinity of these components toward graphene nanoplatelets and also the effect of nanoplatelets’ edges which have free tails and can bond with other molecules. Moreover, graphene nanoplatelets decreased the activation energy of the conversion to 154.48 and 152.13 kJ mol?1 by FWO and KAS methods, respectively.

  相似文献   

17.
The perfluoroalkyl phosphate acrylates were grafted onto a cotton fabric via γ-ray irradiation to improve the hydrophobic and oleophobic properties. The change in chemical structure of grafted cotton fabric was detected by the Fourier transform infrared spectroscopy and the X-ray photoelectron spectroscopy. The contact angles for water and sunflower oil were determined to be over 150° and 140°, respectively, after irradiated with a dose range of 471–5664 Gy. The flame retardancy of the fabric with a grafting ratio of over 13.0 wt% was improved, reaching to 24 compared with 18 of which before grafted, according to the limiting oxygen index measurement. The microstructure of the fabric before and after grafted was observed by the scanning electron microscope.  相似文献   

18.
In present times, researchers are attracted towards studies on biocomposite as a potential biodegradable bone implant materials. Bioactivity of the composite in a simulated body fluid (SBF) was investigated. A porous Co-Cr-Mo based composite material with bio-glass 45S5 was produce by using powder metallurgy method (PM) technology. Prepared composite powders were cold pressed and sintered at 1000 °C for 2 h. X-ray diffraction (XRD), scanning electron microscopy were used for phase analysis and also for evaluation of particle distribution of composites. Bioactivity behaviour of the prepared nanocomposites was evaluated in simulated body fluid (SBF) for 1 up to 18 days. The results showed that the apatite layer were formed on the surface of sample with addition of bioactive glass. It was concluded that bioinert Co-Cr-Mo alloy could be successfully converted into bioactive composite by adding 6 wt% of BG particles.  相似文献   

19.
This paper investigated the reinforcing effects of a hybrid filler, including talc and exfoliated graphene nanoplatelets (xGnPs), in polypropylene (PP) composites. In order to increase the interphase adhesion, maleic anhydride grafted polypropylene (MAPP) was added as a compatibilizing agent to the PP/talc/xGnP composites. The experiments were designed according to response surface methodology (RSM) to optimize the effects of three variable parameters, namely talc, MAPP and xGnP, on the mechanical properties. In the sample preparation, three levels of filler loading were used for talc (0, 15, 30 wt%), xGnP (0, 0.75, 1.5 wt%) and MAPP (0, 2, 4 wt%). From the analysis of variance (ANOVA), it was found that the talc and xGnP play a significant role in the mechanical properties and morphology of the composites, as proven by scanning electron microscopy (SEM) and differential scanning calorimeter (DSC). In order to simultaneously maximize these mechanical properties, the desirable values of the additives were predicted to be 30 wt% for talc, 4 wt% for MAPP and 0.69 wt% for xGnP. The obtained normal probability plots indicated good agreement between the experimental results and those predicted by the RSM models.  相似文献   

20.
The drawback of the application for poly(l-lactide) (PLLA) is the low crystalline rate and crystallinity obtaining via normal processing methods. Modifying crystallization of PLLA has been found to be an efficient way to improve its mechanical and heat resistance properties. In this wok, 4, 4′-diphenylmethane diisocyanate (M) and benzohydrazine (P) were employed into PLLA melt to in-situ form nucleating agents. The in-situ melting reaction was confirmed by a nuclear magnetic resonance spectroscopy. The crystallization behavior and crystalline morphology were investigated by a differential scanning calorimetry, a polarized optical microscopy and a field emission scanning electron microscope. The crystalline rate of PLLA was abruptly enhanced by adding (M+P) and melting reaction with PLLA. The crystallization half-time of PLLA dramatically decreased from 42.0 to 1.1 min at 130 °C by the in-situ formation of nucleating agents. The crystallinity of PLLA increased from 10.3 to 42.1 by adding 0.25% (M+P) and melting reaction for 8 min. Furthermore, the size of PLLA crystals was dramatically reduced because of the nucleating effect. Accompanied with improvement on crystallinity, the Vicat softening temperature of PLLA shifted from 57.4 °C to 93.7 °C by the in-situ reaction with 6.00% (M+P), and indicating heat resistance enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号