首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In order to study the electronic structure and structural stability of borane and carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters, especially the stability difference between the borane and carborane C2B3H5. The frontier orbital energy levels of the borane and carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters are calculated at CCSD(T)/aug‐cc‐pVXZ//B3LYP/def2‐TZVPP level. The results are further analyzed by qualitative frontier orbital method based on the cap–ring interaction. The results reveal that: (1) the larger Egap(HOMO‐LUMO energy gap) of carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters than borane (5 ≤ n ≤ 7) clusters originates from the more effective cap–ring orbital overlap of carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters than that of borane (5 ≤ n ≤ 7) clusters; (2) the smallest Egap of the borane results from the highest energy level of the ring symmetry‐adapted linear combination orbital of cluster; and (3) the largest Egap of the carborane C2B3H5 is induced by the most effective cap–ring orbital interaction of C2B3H5 cluster. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
A new series of divalent boron‐rare gas cations (Rg = He ∼ Rn, n = 1–4) have been predicted theoretically at the B3LYP, MP2, and CCSD(T) levels to present the structures, stability, charge distributions, bond natures, and aromaticity. The Rg B bond energies are quite large for heavy rare gases and increase with the size of the Rg atom. Because of steric hindrance new Rg atoms introduced to the B4 ring will weaken the Rg B bond. Thus in the Rg B bond has the largest binding energy 90–100 kcal/mol. p‐ has a slightly shorter Rg B bond length and a larger bond energy than o‐ . NBO and AIM analyses indicate that for the heavy Rg atoms Ar ∼ Rn the B Rg bonds have character of typical covalent bonds. The energy decomposition analysis shows that the σ‐donation from rare gases to the boron ring is the major contribution to the Rg B bonding. Adaptive natural density partitioning and nuclear‐independent chemical shift analyses suggest that both and have obvious aromaticity.  相似文献   

3.
Algorithms to build the basis and matrix representation to obtain the Kramers configuration space functions (KCSFs) via diagonalization will be formally generalized to an arbitrary number of unpaired (open shell) fermions. Effective build up of the matrix representation will be outlined (including threading and graphical processing unit parallelism) to subsequently obtain the KCSFs via calling external/numerical library routines for diagonalization. The effective build up of the matrix representation relays on a binary tree search algorithm to allow evaluation the action on a given basis vector. The binary tree search avoids the treatment of zero matrix elements which leads to an exponential acceleration. The implementation ( basis creation, matrix representation, and matrix diagonalization) will be done in an all in core and all at once manner, hence the available core memory sets the physical limits in practical applications. Memory limitations, sparsity of the matrix, general case of n fermions in m spinors, and the application of KCSFs will be put into further perspective.  相似文献   

4.
The geometric and electronic structures of a series of silicon fluorides (n = 4 ? 6) were computationally studied with the aid of density functional theory (DFT) method with B3LYP and M06‐2X functionals and coupled cluster (CCSD and CCSD(T)) methods with 6‐311++G(d,p) basis set. The nature of the Si‐F bonds in these compounds was analyzed in the framework of the natural bond orbital theory and natural resonance theory. Energy characteristics (heats of reactions and energy barriers) of the dissociation reactions → SiF4 + F and → + F were calculated using the DFT and CCSD methods. The potential energy surface of elimination of a fluoride anion from has a specific topology with valley‐ridge inflection points corresponding to bifurcations of the minimal energy reaction path. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
In the course of a 5 μm high‐resolution infrared study of laser ablation products from carbon–sulfur targets, the ν1 vibrational mode region of linear C3S has been studied continuously from 2046 to 2065 cm?1. Besides the prominent vibrational fundamental, the region was found to feature the , and even hot bands, the latter two of which were observed for the first time. Owing to the high signal‐to‐noise ratio obtained, the ν1 mode of S could also be observed in natural abundance for the first time at high spectral resolution in the infrared. At 2061 cm?1, hidden inside the branch of the C3S ν1 fundamental mode, a weak new band is observed which exhibits very tight line spacing and stems from a heavy both carbon and sulfur containing carrier. On the basis of high‐level quantum‐chemical calculations of selected carbon–sulfur chains and other carbon‐rich cumulenes, this feature is attributed to the ν5 vibrational fundamental of linear SC7S, which stands for the first gas‐phase spectroscopic detection of this long cumulenic chain.  相似文献   

6.
Comprehensive investigations on the structural modifications of negative hydrogen ion within an impenetrable spherical domain has been performed in the framework of Ritz variational method. Electron correlation plays a major role in the formation of H ion. The Hylleraas‐type basis set expansion of wave function considered here incorporates the effect of electron correlation in an explicit manner. Energy values of and 1sn states of H ion within confined domain have been calculated. Although the singly excited states do not exist for a “free” H ion, well converged energy values of such states have been found within a wide range of confinement radius. The thermodynamic pressure felt by the ion inside the sphere is also estimated. The general trend shows successive destabilization of the excited energy levels with increase of pressure. The contribution of angular correlation in the energy values have been estimated. Evolution of and energy levels of H ion as quasi‐bound states are being reported.  相似文献   

7.
A full dimensional time‐dependent quantum wavepacket approach is used to study the photodissociation dynamics of nitrous oxide for the X → 2 bound–bound transition based on new highly accurate potential energy and transition dipole moment surfaces. The computed 2 absorption spectra at room temperature are characterized by sharp vibrational structures that contribute slightly to the diffuse vibrational structures around the maximum peak at 180 nm of the first ultraviolet absorption band (from the contribution of 2 , 1 , and 2 states) of N2O. Transitions from different initial rovibrational states reveal that the sharp structures arise mainly from N2? O bending vibrations, whereas, at higher temperatures, the N2? O and N? NO stretching vibrations are responsible for enhancing the intensity of the structures. At absorption wavelengths 166 nm and 179 nm, vibrational quantum state distributions of N2 product fragments decrease monotonically with increasing vibrational quantum number v = 0, 1, 2. At 166 nm, rotational quantum state distributions of N2 at fixed v = 0 and v = 1 display multimodal profiles with maximum peaks at j = 77 and j = 75, respectively, whereas, the distributions at the 179 nm absorption wavelength display bimodal profiles with maximum peaks at j = 73 and j = 71, respectively. Accordingly, the presence of rotationally hot N2 from previous experimental and theoretical works in the first band strongly implies a significant influence of the 2 state in determining the final dissociation pathway of N2 + O. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Numerous types of quantum chemical calculations and protocols have been successfully applied to computing of small, uncomplicated organic molecules. Here, we argue for the need to shift attention to more challenging molecules that are marked by an interplay of complicating factors such as conformational, tautomeric, steric, and other effects. The challenge is not in choosing the right quantum chemical method and solvation model but in combining the existing methods to simultaneously and accurately describe the breadth of chemical and physical phenomena that give rise to the experimentally observed . The complexity of the phenomena that must be considered begs for the need for a greater automation of prediction workflows. We review our experience with these challenges and outline paths for future progress in the direction of tackling prediction of complex organic molecules.  相似文献   

9.
The Franck-Condon factors and r centroids for the first negative and the second negative band systems of the molecule, based on the Rydberg-Klein-Rees potential energy curves, have been computed. The variation of the electronic transition moment with the internuclear separation has been studied for the first negative bands and the Einstein A coefficients, the oscillator strengths, and the absolute band strengths for this system have been calculated by adopting the recent experimental data on the lifetimes of the various levels of the excited B state. On a calculé pour la molécule les facteurs de Franck-Condon et les r centroïds pour les deux premiers systèmes de bandes négatives avec des courbes de potential de Rydberg-Klein-Rees. On a étudié la variation du moment de transition éléctronique avec la séparation internucléaire pour les premières bandes négatives. Les constantes A d'Einstein, les forces d'oscillateur et les intensités absolues des bandes ont été calculé des données expérimentales récentes sur les durées de vie des niveaux différents de l'état excité B . Die Franck-Condon-Faktoren und die r-Zentroide der zwei ersten negativen Banden-systeme des -Moleküls, wurden mit den Rydberg-Klein-kees Potentialkurven berechnet. Die Variation des elektronischen Übergangsmoment mit dem Kernabstand würde für die ersten negativen Bänder studiert. Die Einsteinschen A-Koeffizienten, die Oszillatorstärken and die absoluten Bandenstärken wurden mit die neuen experimentellen Tatsachen über die Lebensdauern der verschiedenen Niveaus des angeregten B Zustands berechnet.  相似文献   

10.
Forward and backward electron/proton ionization/dissociation spectra from one‐dimensional non‐Born‐Oppenheimer H2 molecule exposed to ultrashort intense laser pulses ( W/cm2, λ = 800 nm) have been computed by numerically solving the time‐dependent Schrödinger equation. The resulting above‐threshold ionization and above‐threshold dissociation spectra exhibit the characteristic forward‐backward asymmetry and sensitivity to the carrier‐envelope phase (CEP), particularly for high energies. A general framework for understanding CEP effects in the asymmetry of dissociative ionization of H2 has been established. It is found that the symmetry breaking of electron‐proton distribution with π periodic modulation occurs for all CEPs except for ( integer) and the largest asymmetry coming from the CEP of . At least one of the electron and proton distributions is asymmetric when measured simultaneously. Inspection of the nuclear and electron wave packet dynamics provides further information about the relative contribution of the gerade and ungerade states of to the dissociation channel and the time delay of electrons in asymmetric ionization. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Endohedral metalloborofullerenes (EMBFs) are novel boron analogues of the famous endohedral metallofullerenes (EMFs). Many EMBFs have been proposed by theoretical calculations thus far. However, in sharp contrast to EMFs, which trap most of the lanthanides with f electrons inside the cages, the corresponding lanthanide‐based EMBFs have never been reported. In this work, the encapsulation of Eu and Gd in the B38 and B40 fullerenes was studied by means of density functional theory calculations. Our results revealed that Gd@B38(9A), Eu@B40(8B2), and Gd@B40(7A″) all favor the endohedral configuration, and the electronic structures can be described as Gd3+@ , Eu2+@ , and Gd3+@ with jailed f electron spins. The large binding energies and sizable HOMO–LUMO gaps suggest that they may be achieved experimentally. They feature σ and π double aromaticity, and their excellent stabilities were confirmed by the Born–Oppenheimer molecular dynamics simulations. Finally, the infrared and UV/vis spectra were simulated to assist experimental characterization.  相似文献   

12.
The interactions of rare gas atoms (Rg = Ar, Kr, and Xe) with small neutral and cationic silver clusters have been investigated by density functional methods and the effect of these weak interactions on the resonance Raman spectra of the complexes has been evaluated. The resonance Raman technique that depends on the properties of ground and excited state, seems deeply sensitive to the weak rare gas–metal cluster interactions, and the use of inert gases has been proven to be an excellent approach to recognize the ability of this technique to detect extremely weak interactions. In this work, for , and complexes the IR, normal and resonance Raman spectra have been calculated and the effect of rare gas–cluster stretching vibration ( ) on the pattern and the relative intensities of different spectra have been investigated. The resonance Raman spectra for the weakly interacted complexes (with the interaction energies less than ?2.0 kcal/mol) exhibit the vibration with the detectable intensity that its intensity increases by going from Ag6–Ar to Ag6–Xe complex. Moreover, the resonance Raman spectra (based on the excited state gradient approximation) for high intensity nearly degenerate excited states, proved the effect of accumulation of the excited state charge density on the relative intensity of vibration.  相似文献   

13.
Many fermions Kramers pairs formalism is considered from the prospective of the sum of individual single fermion time‐reversal operators. The obtained many fermions “pseudo Kramers pairs operator” ( ), as well as its square ( ), have formally the same structure as the many fermion spin operators and . Nevertheless, the shape of eigenfunctions with respect to and is different. Herein all Kramers adapted eigenfunctions of for cases of up to four unpaired fermions are compiled, and their properties with respect to further advocated. It will be shown that degeneracy of the multiplets recovers the proper behavior with respect to Pascal's triangle. A projection operator for obtaining the “high spin” Kramers adapted eigenfunctions is suggested. Noncommutation of with spin and angular momentum operators and degeneracy is discussed at last. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Energy eigenvalues of nonautoionizing doubly excited states originating from 2pnf ( ) configuration of two‐electron atoms have been calculated by expanding the basis set in explicitly correlated Hylleraas coordinates under the framework of Ritz variational method. A detailed discussion on the evaluation of correlated basis integrals is given. The energy eigenvalues of a number of these doubly excited states are being reported for the first time especially for the high lying states. The effective quantum numbers ( ) for the states mentioned above have been calculated by using the theory of quantum defect.  相似文献   

15.
We present accurate calculations of the non‐autoionizing and doubly excited states of the H2 molecule using full configuration interaction with Hartree–Fock molecular orbitals and Heitler–London atomic orbitals. We consider the united atom configurations from He(2p2p) up to He(2p8g) and dissociation products from H2(2p + 2p) up to H2(2p + 6?). Born–Oppenheimer calculations are carried out with extended and optimized Slater‐type orbitals for a total of 40 states, 10 for each symmetry, covering the internuclear distances from the united atom to dissociation, which, for some states, is reached beyond 100 a0. Occurrences of repulsive states cleanly interlaced between bound states with many vibrational levels are reported. Some of the potential minima are deep enough to accommodate many vibrational levels (up to 50). Noteworthy large equilibrium minima, like Req = 46.0 a0 in the state dissociating as (2p + 6h) and with 18 vibrational levels. The occurrence of vertical excitations from the singly excited manifolds is analyzed. Several states present double minima generated by avoided crossings, some with a strong ionic character. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
A theoretical procedure has been developed and implemented to calculate the optical rotation of chiral molecules in ordered phase via origin‐independent diagonal components , of the optical activity tensor and origin‐independent components , for , of the mixed electric dipole‐electric quadrupole polarizability. Origin independence was achieved by referring these tensors to the principal axis system of the electric dipole dynamic polarizability at the same laser frequency ω. The approach has been applied, allowing for alternative quantum mechanical methods based on different gauges, to estimate near Hartree–Fock values for three chiral molecules, (2R)‐N‐methyloxaziridine C2NOH5, (2R)‐2‐methyloxirane (also referred to as propylene oxide) C3OH6, and ( )‐1,3‐dimethylallene C5H8, at two frequencies. The theoretical predictions can be useful for an attempt at measuring correspondent experimental values in crystal phase. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The electronic structure of several many‐electron atoms, confined within a penetrable spherical box, was studied using the Hartree–Fock (HF) method, coupling the Roothaan's approach with a new basis set to solve the corresponding one‐electron equations. The resulting HF wave‐function was employed to evaluate the Shannon entropy, , in configuration space. Confinements imposed by impenetrable walls induce decrements on when the confinement radius, Rc, is reduced and the electron‐density is localized. For confinements commanded by penetrable walls, exhibits an entirely different behavior, because when an atom starts to be confined, delivers values less than those observed for the free system, in the same way that the results presented by impenetrable walls. However, from a confinement radius, shows increments, and precisely in these regions, the spatial restrictions spread to the electron density. Thus, from results presented in this work, the Shannon entropy can be used as a tool to measure the electron density delocalization for many‐electron atoms, as the hydrogen atom confined in similar conditions.  相似文献   

18.
The one electron systems H, H , and HeH confined by an impenetrable spheroidal cavity are revisited in the frame of the Lagrange‐mesh method. The Born–Oppenheimer approximation where the nuclei are clamped at the foci is considered. Benchmark results of the total energy are obtained as a function of the interfocal distance R and the eccentricity of the cavity . Dipole oscillator strengths are calculated for the molecular ions H and HeH .  相似文献   

19.
An accurate semianalytic wavefunction is proposed for the Hookium and two‐electron atoms for varying strength of where is the strength parameter and is coulomb interaction between two electrons. The wavefunction leads to energies that are as accurate as those from the Coupled cluster singles and doubles (CCSD) calculations. Using this wavefunction, we construct the external potential such that the density of the system remains unchanged as is varied. The work thus gives a unified picture of adiabatic connection for these systems based on an easy to use wavefunction and complements the past investigations done in this direction. Using the potential obtained, we explicitly calculate the energy of the corresponding positive ions and show that the chemical potential—calculated as the difference between the energies of the two‐electron system and its positive ion—is equal to the experimental ionization energy and remains unchanged as is varied. Furthermore, using total energies of these systems as a function of , we provide a new perspective into a variety of hybrid functionals.  相似文献   

20.
Shannon entropy (S), Rényi entropy (R), Tsallis entropy (T), Fisher information (I), and Onicescu energy (E) have been explored extensively in both free H atom (FHA) and confined H atom (CHA). For a given quantum state, accurate results are presented by employing respective exact analytical wave functions in r space. The p‐space wave functions are generated from respective Fourier transforms—for FHA these can be expressed analytically in terms of Gegenbauer polynomials, whereas in CHA these are computed numerically. Exact mathematical expressions of , are derived for circular states of a FHA. Pilot calculations are done taking order of entropic moments (α, β) as in r and p spaces. A detailed, systematic analysis is performed for both FHA and CHA with respect to state indices n, l, and with confinement radius (rc) for the latter. In a CHA, at small rc, kinetic energy increases, whereas decrease with growth of n, signifying greater localization in high‐lying states. At moderate rc, there exists an interplay between two mutually opposing factors: (i) radial confinement (localization) and (ii) accumulation of radial nodes with growth of n (delocalization). Most of these results are reported here for the first time, revealing many new interesting features. Comparison with literature results, wherever possible, offers excellent agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号