首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 887 毫秒
1.
Seven crystal structures of five first‐row (Fe, Co, Ni, Cu, and Zn) and one second‐row (Cd) transition metal–4‐picoline (pic)–sulfate complexes of the form [M(pic)x]SO4 are reported. These complexes are catena‐poly[[tetrakis(4‐methylpyridine‐κN)metal(II)]‐μ‐sulfato‐κ2O:O′], [M(SO4)(C6H7N)4]n, where the metal/M is iron, cobalt, nickel, and cadmium, di‐μ‐sulfato‐κ4O:O‐bis[tris(4‐methylpyridine‐κN)copper(II)], [Cu2(SO4)2(C6H7N)6], catena‐poly[[bis(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)2]n, and catena‐poly[[tris(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)3]n. The Fe, Co, Ni, and Cd compounds are isomorphous, displaying polymeric crystal structures with infinite chains of MII ions adopting an octahedral N4O2 coordination environment that involves four picoline ligands and two bridging sulfate anions. The Cu compound features a dimeric crystal structure, with the CuII ions possessing square‐pyramidal N3O2 coordination environments that contain three picoline ligands and two bridging sulfate anions. Zinc crystallizes in two forms, one exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a tetrahedral N2O2 coordination containing two picoline ligands and two bridging sulfate anions, and the other exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a trigonal bipyramidal N3O2 coordination containing three picoline ligands and two bridging sulfate anions. The structures are compared with the analogous pyridine complexes, and the observed coordination environments are examined in relation to crystal field theory.  相似文献   

2.
A new one‐dimensional platinum mixed‐valence complex with nonhalogen bridging ligands, namely catena‐poly[[[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(II)]‐μ‐thiocyanato‐κ2S:S‐[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(IV)]‐μ‐thiocyanato‐κ2S:S] tetrakis(perchlorate)], {[Pt2(SCN)2(C2H8N2)4](ClO4)4}n, has been isolated. The PtII and PtIV atoms are located on centres of inversion and are stacked alternately, linked by the S atoms of the thiocyanate ligands, forming an infinite one‐dimensional chain. The PtIV—S and PtII...S distances are 2.3933 (10) and 3.4705 (10) Å, respectively, and the PtIV—S...PtII angle is 171.97 (4)°. The introduction of nonhalogen atoms as bridging ligands in this complex extends the chemical modifications possible for controlling the amplitude of the charge‐density wave (CDW) state in one‐dimensional mixed‐valence complexes. The structure of a discrete PtIV thiocyanate compound, bis(ethane‐1,2‐diamine‐κ2N,N′)bis(thiocyanato‐κS)platinum(IV) bis(perchlorate) 1.5‐hydrate, [Pt(SCN)2(C4H8N2)2](ClO4)2·1.5H2O, has monoclinic (C2) symmetry. Two S‐bound thiocyanate ligands are located in trans positions, with an S—Pt—S angle of 177.56 (3)°.  相似文献   

3.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

4.
Fluorine is the most electronegative element and can be used as an excellent hydrogen‐bond acceptor. Fluorous coordination compounds exhibit several advantageous properties, such as enhanced high thermal and oxidative stability, low polarity, weak intermolecular interactions and a small surface tension compared to hydrocarbons. C—H…F—C interactions, although weak, play a significant role in regulating the arrangement of the organic molecules in the crystalline state and stabilizing the secondary structure. Two cadmium(II) fluorous coordination compounds formed from 2,2′‐bipyridine, 4,4′‐bipyridine and pentafluorobenzoate ligands, namely catena‐poly[[aqua(2,2′‐bipyridine‐κ2N ,N ′)(2,3,4,5,6‐pentafluorobenzoato‐κO )cadmium(II)]‐μ‐2,3,4,5,6‐pentafluorobenzoato‐κ2O :O ′], [Cd(C7F5O2)2(C10H8N2)(H2O)]n , (1), and catena‐poly[[diaquabis(2,3,4,5,6‐pentafluorobenzoato‐κO )cadmium(II)]‐μ‐4,4′‐bipyridine‐κ2N :N ′], [Cd(C7F5O2)2(C10H8N2)(H2O)2]n , (2), have been synthesized solvothermally and structurally characterized. Compound (1) shows a one‐dimensional chain structure composed of Cd—O coordination bonds and is stabilized by π–π stacking and O—H…O hydrogen‐bond interactions. Compound (2) displays a one‐dimensional linear chain structure formed by Cd—N coordination interactions involving the 4,4′‐bipyridine ligand. Adjacent one‐dimensional chains are extended into two‐dimensional sheets by O—H…O hydrogen bonds between the coordinated water molecules and adjacent carboxylate groups. Moreover, the chains are further linked by C—H…F—C interactions to afford a three‐dimensional network. In both structures, hydrogen bonding involving the coordinated water molecules is a primary driving force in the formation of the supramolecular structures.  相似文献   

5.
The title complexes, catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)­cobalt(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ2O1:O4], [Co(C8H4O4)(C12H8N2)(H2O)], (I), and catena‐poly[[[(di‐2‐pyridyl‐κN‐amine)copper(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ4O1,O1′:O4,O4′] hydrate], [Cu(C8H4O4)(C10H9N3)]·H2O, (II), take the form of zigzag chains, with the 1,4‐benzene­di­carboxyl­ate ion acting as an amphimonodentate ligand in (I) and a bis‐bidentate ligand in (II). The CoII ion in (I) is five‐coordinate and has a distorted trigonal–bipyramidal geometry. The CuII ion in (II) is in a very distorted octahedral 4+2 environment, with the octahedron elongated along the trans O—Cu—O bonds and with a trans O—Cu—O angle of only 137.22 (8)°.  相似文献   

6.
The structure of the title compound, catena‐poly[[bis(1,1,1,5,5,5‐hexafluoropentane‐2,4‐dionato‐κ2O,O′)zinc(III)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C5HF6O2)2(C10H8N2)]n, con­sists of polymeric chains, running in two perpendicular directions, organized as planes normal to the tetragonal axis. The elemental unit of the chains is the zinc(II) coordination polyhedron bisected by a twofold symmetry axis, and thus only half of the unit is independent. The octahedral coordination geometry of the metal centre is composed of two oxy­gen‐chelating (symmetry‐related) hexa­fluoro­acetyl­acetonate groups and two translationally related 4,4′‐bi­pyridine groups, which act as connecting agents in the polymer structure. The stabilization of this architecture of chains and planes is associated with a number of weak C—H⋯O and C—H⋯F hydrogen bonds.  相似文献   

7.
The title compound, catena‐poly­[[(heptanoato‐O,O′)­lead(II)]‐μ‐heptanoato‐O,O′:O:O′], [Pb(C7H13O2)2], is a metallic soap which can be used as a corrosion inhibitor since it forms a passive film at the Pb surface. Its structure is characterized by two‐dimensional layers parallel to the bc plane. The layers are packed through van der Waals interactions along the a direction and form blocks parallel to (001). The 6s2 lone pair of electrons on PbII is stereochemically active in this compound, which leads to a hemidirected octahedral geometry for the O‐environment around the Pb atoms.  相似文献   

8.
The title compound, catena‐poly[[tris(μ‐4‐methylbenzoato)‐κ2O:O4O:O′‐(4‐methylbenzoato‐κ2O,O′)dizinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn2(C8H7O2)4(C10H8N2)]n, is a novel coordination polymer. The asymmetric unit contains two unique ZnII ions, four 4‐methylbenzoate ligands and one 4,4′‐bipyridine (4,4′‐bpy) ligand, all in general positions. The four 4‐methylbenzoate ligands link the two ZnII centres to form a dinuclear unit, with a Zn...Zn separation of 3.188 (2) Å, which can be regarded as a supramolecular secondary building unit (SBU). These SBUs are further bridged by 4,4′‐bpy ligands, forming a novel one‐dimensional infinite chain. There are π–π stacking interactions between the benzene rings of the 4‐methylbenzoate ligands and the pyridyl rings of the 4,4′‐bpy ligands, leading to the formation of a corrugated layer. These layers are further assembled via C—H...O hydrogen bonds into a three‐dimensional supramolecular network structure. Coordination polymers such as the title compound are of interest for their potential applications as functional materials.  相似文献   

9.
The title compound, catena‐poly[[tetrakis(μ‐decanoato‐κ2O:O′)diruthenium(II,III)(RuRu)]‐μ‐octanesulfonato‐κ2O:O′], [Ru2(C10H19O2)4(C8H17O3S)], is an octane­sulfonate derivative of the mixed‐valence complex diruthenium tetradecanoate. The equatorial carboxyl­ate ligands are bidentate, bridging two Ru atoms to form a dinuclear structure. Each of the two independent dinuclear metal complexes in the asymmetric unit is located at an inversion centre. The octane­sulfonate anion bridges the two dinuclear units through axial coordination. The alkyl chains of the carboxyl­ate and sulfonate ligands are arranged in a parallel manner. The global structure can be seen as infinite chains of polar moieties separated by a double layer of non‐polar alkyl groups, without interdigitation of the alkyl chains.  相似文献   

10.
The reaction of bis­(1,3‐diphenylpropane‐1,3‐dionato)cobalt(II), [Co(dbm)2], with bis­(diphenyl­phosphino)ethane (dppe) affords the coordination polymer catena‐poly[[bis­(1,3‐diphenyl­propane‐1,3‐dionato‐κ2O,O′)cobalt(II)]‐μ‐ethyl­enebis(diphenyl­phosphine oxide)‐κ2O:O′], trans‐[Co(C15H11O2)2(C26H24O2P2)]n, as a result of oxidation of the diphos­phine. The Co atom is octa­hedral, with a CoO6 coordination sphere, and the chelating dbm ligands adopt a trans configuration. The Co atom also lies on a centre of inversion, with a further symmetry centre bis­ecting the bridging ethyl­enebis(diphenyl­phosphine oxide) ligand.  相似文献   

11.
The crystal structure of catena‐poly[[triaquabis(ethanesulfonato‐κO)europium(III)]‐μ‐ethanesulfonato‐κ2O:O′], [Eu(C2H5SO3)3(H2O)3]n, is the first reported determination of a rare earth ethanesulfonate and also of any hydrated binary metal ethanesulfonate. Two of the three ethanesulfonate anions act as bidentate bridging ligands and connect the single [Eu(C2H5SO3)3(H2O)3] building blocks into infinite chains along the [010] direction. Hydrogen bonds between the water molecules of one chain and sulfonate anions and water molecules of adjacent chains associate the chains into a two‐dimensional supramolecular network. In the third direction, only van der Waals forces between the alkyl groups are observed.  相似文献   

12.
Two different zinc sulfite compounds have been prepared through the decomposition of pyrosulfite–­di­thionite ions in aqueous solution, viz. a dimeric complex, di‐μ‐sulfito‐κ3O,O′:O′′;κ3O:O′,O′′‐bis­[(4,4′‐di­methyl‐2,2′‐bi­pyridine‐κ2N,N′)­zinc(II)] dihydrate, [Zn2(SO3)2(C12H12N2)2]·2H2O, (I), which was solved and refined from a twinned sample, and an extended polymer, poly­[[aqua(1,10‐phenanthroline‐κ2N,N′)­zinc(II)]‐μ3‐sulfito‐κ2O:O′:O′′‐zinc(II)‐μ3‐sulfito‐κ3O:O:O′], [Zn2(SO3)2(C12H10N2)(H2O)]n, (II). In (I), the dinuclear ZnII complex has a center of symmetry. The cation is five‐coordinate in a square‐pyramidal arrangement, the anion fulfilling a bridging chelating role. Compound (II) comprises two different zinc units, one being five‐coordinate (square pyramidal) and the other four‐coordinate (trigonal pyramidal), and two independent sulfite groups with different binding modes to the cationic centers.  相似文献   

13.
Three isotypic rare earth complexes, catena‐poly[[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐bis(μ‐but‐2‐enoato)‐κ3O,O′:O3O:O,O′‐[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐μ‐4,4′‐(ethane‐1,2‐diyl)dipyridine‐κ2N:N′], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4′‐(ethene‐1,2‐diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one‐dimensional coordination polymers made up of centrosymmetric dinuclear [M(but‐2‐enoato)3(H2O)]2 units (M = rare earth), further bridged by centrosymmetric 4,4′‐(ethane‐1,2‐diyl)dipyridine or 4,4′‐(ethene‐1,2‐diyl)dipyridine spacers into sets of chains parallel to the [20] direction. There are intra‐chain and inter‐chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).  相似文献   

14.
The structures of the Mg, Ca, Sr and Ba salts of 1‐naphthoic acid are examined and compared with analogous structures of salts of benzoate derivatives. It is shown that catena‐poly[[[diaquabis(1‐naphthoato‐κO)magnesium(II)]‐μ‐aqua] dihydrate], {[Mg(C11H7O2)2(H2O)3]·2H2O}n, exists as a one‐dimensional coordination polymer that propagates only through Mg—OH2—Mg interactions along the crystallographic b direction. In contrast with related benzoate salts, the naphthalene systems are large enough to prevent inorganic chain‐to‐chain interactions, and thus species with inorganic channels rather than layers are formed. The Ca, Sr and Ba salts all have metal centres that lie on a twofold axis (Z′ = ) and all have the common name catena‐poly[[diaquametal(II)]‐bis(μ‐1‐naphthoato)‐κ3O,O′:O3O:O,O′], [M(C11H7O2)2(H2O)2]n, where M = Ca, Sr or Ba. The Ca and Sr salts are essentially isostructural, and all three species form one‐dimensional coordination polymers through a carboxylate group that forms three M—O bonds. The polymeric chains propagate via c‐glide planes and through MOMO four‐membered rings. Again, inorganic channel structures are formed rather than layered structures, and the three structures are similar to those found for Ca and Sr salicylates and other substituted benzoates.  相似文献   

15.
The croconate dianion is a highly versatile ligand with two tautomeric forms making it useful for building large superstructures in the solid state. The single‐crystal X‐ray structures of PbII– and CdII–croconate coordination polymers, namely catena‐poly[[[diaqualead(II)]‐μ‐croconato‐κ4O1,O2:O3,O4] monohydrate], {[Pb(C5O5)(H2O)2]·H2O}n, 1 , and catena‐poly[[triaquacadmium(II)]‐μ‐croconato‐κ4O1,O2:O3,O4], [Cd(C5O5)(H2O)3]n, 2 , have been determined. Both polymers form one‐dimensional (1D) structures; 1 is a nonplanar 1D zigzag coordination polymer extended along the crystallographic b axis, whereas 2 is a planar 1D ribbon parallel to the [101] direction. In 2 , three H2O molecules are coordinated directly to the metal atom, while in 1 , only two H2O molecules are directly coordinated to the metal atom. A third interstitial H2O molecule is involved in hydrogen bonding with O atoms of the croconate ligands of an adjacent layer and other H2O molecules, resulting in stacked double layers parallel to the [105] plane. Solid‐state FT–IR and solution UV–Vis spectra also substantiate the croconate coordination.  相似文献   

16.
In title an­hydro­us catena‐poly­[[trans‐bis­(ethane‐1,2‐di­amine‐κ2N,N′)copper(II)]‐μ‐di­thionato‐κ2O:O′], [Cu(S2O6)(C2H8N2)2]n or [{H2N(CH2)2NH2}2Cu(O·O2SSO2·O)], successive Cu atoms are bridged by a single doubly charged di­thionate group, forming a one‐dimensional polymer with inversion centres at the metal atoms and the mid‐point of the S—S bond [Cu—O = 2.5744 (15) Å]. In title (hydrated) trans‐di­aqua­bis­(propane‐1,3‐di­amine‐κ2N,N′)copper(II) di­thionate, [Cu(C3H10N2)2(H2O)2](S2O6) or [{H2N(CH2)3NH2}2Cu(OH2)2](S2O6), both ions have imposed 2/m symmetry. The `axial' anion components are displaced by a pair of water ligands [Cu—O = 2.439 (3) Å], the shorter Cu—O distance being compensated by the lengthened Cu—N distance [2.0443 (18), cf. 2.0100 (13) and 2.0122 (16) Å].  相似文献   

17.
In the title coordination polymer, catena‐poly[[dichloridomanganese(II)]‐μ‐1,1‐diphenyl‐3,3′‐[(1R,2R)‐cyclohexane‐1,2‐diylbis(azaniumylylidene)]dibut‐1‐en‐1‐olate‐κ2O:O′], [MnCl2(C26H30N2)]n, synthesized by the reaction of the chiral Schiff base ligand 1,1‐diphenyl‐3,3′‐[(1R,2R)‐cyclohexane‐1,2‐diylbis(azanediyl)]dibut‐2‐en‐1‐one (L) with MnCl2·4H2O, the asymmetric unit contains one crystallographically unique MnII ion, one unique spacer ligand, L, and two chloride ions. Each MnII ion is four‐coordinated in a distorted tetrahedral coordination environment by two O atoms from two L ligands and by two chloride ligands. The MnII ions are bridged by L ligands to form a one‐dimensional chain structure along the a axis. The chloride ligands are monodentate (terminal). The ligand is in the zwitterionic enol form and displays intramolecular ionic N+—H...O hydrogen bonding and π–π interactions between pairs of phenyl rings which strengthen the chains.  相似文献   

18.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

19.
The crystal structures of two complexes containing the peroxodisulfate anion are reported, namely μ‐peroxodisulf­ato‐1κO:2κO′‐bis­[(acetato‐κ2O,O′)aqua­(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)cadmium(II)] hepta­hydrate, [Cd2(C2H3O2)2(S2O8)(C15H11N2)2(H2O)2]·7H2O, (I), and catena‐poly[[[bis(2,2′‐bipy­ridine‐κ2N,N′)mercury(II)]‐μ‐peroxodisulfato‐κ2O:O′] 0.4‐hy­drate], {[Hg(C10H8N2)2(S2O8)]·0.4H2O}n, (II). In both structures, the anion behaves as a bridge, linking neighbouring coordination polyhedra in two different ways, either tightly bound to the hepta­coordinated Cd2+ cation forming neatly separated dimeric entities in (I) or across a shorter O—S—O path producing weakly connected chains by way of `semi­coordination' to the Hg2+ cations in (II).  相似文献   

20.
The title compound, [Dy2(C8H7O2)6(C12H8N2)2], forms binuclear complexes, viz. di‐μ‐4‐methyl­benzoato‐κ4O:O′‐bis[bis(4‐methyl­benzoato‐κ2O,O′)(1,10‐phenanthroline‐κ2N,N′)dyspros­ium(III)] tetra‐μ‐4‐methyl­benzoato‐κ8O:O′‐bis[(4‐methyl­benzoato‐κ2O,O′)(1,10‐phenanthroline‐κ2N,N′)dyspros­ium(III)]. There are two independent binuclear com­plexes in the asymmetric unit, both of which are centrosymmetric. In one, the DyIII ions are linked by two bridging 4‐­methyl­benzoate groups, while in the other, the DyIII ions are linked by four bridging 4‐methyl­benzoate groups. The remaining 4‐methyl­benzoate groups and 1,10‐phenanthroline units coordinate to just one metal ion in bidentate modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号