首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 2D CuII metal‐organic framework [Cu2(bptc)(H2O)4]n · 4nH2O ( 1 ) (H4bptc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid) was hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction and magnetic measurements. In the structure, bptc4– serves as a twisted Π‐shaped organic building block to connect paddlewheel [Cu2(COO)4] dinuclear units and mononuclear units through 2‐/2′‐carboxylate and 4‐/4′‐carboxylate, respectively. According to the magnetic analysis using a dimer‐plus‐monomer model, strong antiferromagnetic coupling is operative within the dinuclear unit (J = –311 cm–1 based on H = –J S 1 S 2), and the compound behaves like a mononuclear molecule at low temperature.  相似文献   

2.
A new coordination polymer, [Cu(3, 4‐pybz)2]n ( 1 ) [3,4‐Hpybz = 3‐pyridin‐4‐yl‐benzoic acid], was synthesized by hydrothermal reaction of CuCl2 · 2H2O and 3,4‐Hpybz, and characterized by elemental analysis, IR spectroscopy, PXRD, and single‐crystal X‐ray diffraction. The structure determination reveals that 1 exhibits a 2D twofold interpenetrated 4‐connected (4,4) network topology, these 2D layers are further enlarged to form the final 3D supramolecular edifice via aromatic π–π stacking interactions. In addition, the magnetic behavior and thermogravimetric analysis of 1 were also studied.  相似文献   

3.
The manganese(II) coordination polymer [Mn(2‐Meimi)21,1‐N3)2]n · nH2O ( 1 ) (Meimi = 2‐methyl‐imidazole) with μ1,1‐N3 (end‐on, EO) bridge was synthesized by hydrothermal reaction of MnCl2, NaN3, and Meimi. It was characterized by elemental analysis, IR spectroscopy, powder XRD, and magnetic measurements. Single crystal X‐ray analysis revealed that compound 1 features a one‐dimensional (1D) catenated structure and the 1D chains are further connected by strong intermolecular hydrogen bonds to a 3D supramolecular framework. Variable‐temperature magnetic susceptibility measurements revealed that compound 1 displays dominant ferromagnetic interactions through the μ1,1‐N3 (end‐on, EO) bridging mode.  相似文献   

4.
A 1D coordination polymer of manganese(III) with a hydrazone‐based ligand, [Mn2(L)(μ‐OCH3)2(OHCH3)2]n ( 1 ), was synthesized and characterized by elemental analyses and spectroscopic methods {H4L = bis[(2‐hydroxynaphthalen‐1‐yl)methylene]adipohydrazide}. The crystal structure of 1 was determined by X‐ray crystallography. The two dianionic domains of the ligand adopt trans configuration, and each coordinates in a tridentate mode via the O, N, O′‐donor atoms to a MnIII ion forming a dinuclear compound. The methoxy ligands provide an asymmetric bridge between two central manganese atoms, which lead to the formation of a 1D coordination polymer. A 2D supramolecular structure is formed by hydrogen bonding interactions between the 1D chains. Although the methoxy ligands are labile, the polymer preserves its oligonuclearity in the solution. Temperature‐dependent magnetic susceptibility studies proved the presence of a weak antiferromagnetic interaction between manganese(III) ions with J = –3.2 cm–1, which results from axial distortion of the manganese coordination environment. Compound 1 showed catalase‐like activity in disproportionation of H2O2.  相似文献   

5.
The reaction of 2‐amino‐benzothiazole with allyl bromide resulted in a mixture of 2‐imino‐3‐allyl‐benzothiazole and 2‐imino‐3‐allyl‐benzothiazolium bromide.Using such a mixture and copper(II) chloride in acetonitrile solution in alternating‐current electrochemical synthesis crystals of the [(CuCl)C10H10SN2] ( I ) have been obtained. The same procedure, performed in ethanol solution, has led to formation of [C10H11SN2+]2[Cu2Cl4]2? ( II ). In the same manner the bromine derivative [C10H11SN2+]2[Cu2Br4]2? ( III ) has been synthesized. All three compounds were X‐ray structurally investigated. I :monoclinic space group P21/n, a = 13.789(6), b = 6.297(3), c = 13.830(6) Å, β = 112.975(4)°, V = 1105.6 (9) Å3, Z = 4 for CuCl·C10H10 SN2 composition. Compounds II and III are isomorphous and crystallize in triclinic space group. II a = 7.377(3), b = 8.506(3), c = 9.998(4) Å, α = 79.892(10)°, β = 82.704(13)°, γ = 78.206(12)°, V = 601.9(4) Å3, Z = 1. III a = 7.329(2), b = 8.766(3), c = 10.265(3) Å, α = 79.253(9)°, β = 82.625(9)°, γ = 77.963(9)°, V = 630.9(3) Å3, Z = 1. In the structure I [(CuCl)C10H10SN2] building blocks are bound into infinitive spiral‐like chains via strong N‐H..Cl hydrogen bonds. In the zwitter‐ionic II and III compounds copper and halide atoms form centrosymmetric [Cu2X4]2? anions, which are interconnected via N‐H..X hydrogen bonds into infinite butterfly‐like chains. The strongest Cu‐(C=C) π‐interaction has been observed in structure I , where copper possesses coordination number 3. Increasing copper coordination number to 4 in II as well as replacing chlorine atoms by bromine ones in III suppresses markedly this interaction.  相似文献   

6.
Two coordination polymers {[Co3L3(Me2NH)2]·(Me2NH)}n(1) and [CuL(bpy)]n(2)(L=2,2'-biphenyl dicarboxylate ion, bpy=4,4'-bipyridine) were obtained and characterized. Compound 1 was synthesised via solvothermal method, with the L ligands adopting syn-syn-μ211- and μ22-coordination modes and Co(II) centers being linked to form a 1D coordination chain with trinuclear Co3 cluster as sub-units. Compound 2 was synthesized at room temperature, with the L ligand chelating the Cu(II) centers to form a 1D chain, which was further linked by the auxiliary 4,4'-bpy ligand to form a 3D coordination network. The results of variable temperature susceptibility studies reveal that there were ferromagnetic and antiferromagnetic interactions between the paramagnetic metal centers in compounds 1 and 2, respectively.  相似文献   

7.
Tris‐o‐semiquinonato cobalt complexes react with a tetrapodal pyridine‐derived ligand to form dinuclear cobalt compounds of general formula (OMP)[CoQ2]2, where OMP = 2,2′‐(pyridine‐2,6‐diyl)bis(N1,N1,N3,N3‐tetramethylpropane‐1,3‐diamine), Q = mono‐ or dianion of 3,6‐di‐tert‐butyl‐o‐benzoquinone (complex 1 ) and it derivatives: 3,6‐di‐tert‐butyl‐4,5‐N,N′‐piperazino‐o‐benzoquinone (complex 2 ), and 3,6‐di‐tert‐butyl‐4‐Cl‐o‐benzoquinone (complex 3 ). Single crystal X‐ray crystallography of 1 and 3 indicates two bis‐quinonato cobalt units bound by an OMP ligand, which acts as a bridge. Each central cobalt atom is chelated by one N1,N1,N3,N3‐tetramethylpropane‐1,3‐diamine and two o‐quinonato fragments. The nitrogen atom of the pyridine ring is uncoordinated. All complexes were characterized by NIR‐IR and EPR spectroscopy, precise adiabatic vacuum calorimetry, and by variable‐temperature magnetic susceptibility measurements. All data indicate a reversible thermally driven redox‐isomeric (valence tautomeric) transformation in the solid state for all complexes.  相似文献   

8.
A three‐dimensional (3D) 3d‐4f complex, [Cu(en)2][Sm2(C5O5)(C2O4)3(H2O)2] · 8H2O ( 1 ) (en = ethylenediamine, C5O52– = dianion of 4,5‐dihydroxycyclopent‐4‐ene‐1,2,3‐trione), were prepared via the in‐situ ring‐opening oxidation reaction of croconate in the presence of the template‐directed complex, [Cu(en)2]2+ cation. The structural characterization determined by X‐ray diffraction determination reveals that the 3D anionic coordination polymer of [Sm2(C2O4)3(C5O5)(H2O)2]2– in 1 can be describe in terms of in‐plane 2D honeycomb‐like [Sm2(C2O4)3] layered frameworks bridged by oxalate with bis‐chelating mode, being mutually interlinked via the bridge of μ1,2,3,4‐croconate ligands with bis‐chelating coordination mode to complete the 3D open framework, which gives rise to 1D channels with pore size of 14.023 × 11.893 Å (longest atom–atom contact distances) along the b axis. The structure‐directing complex, [Cu(en)2]2+, and solvated water molecules are resided into these honeycomb‐type hexagonal channels. The thermal stability of 1 was further studied by TGA and in‐situ powder X‐ray diffraction measurement.  相似文献   

9.
The reactions of Ln(NO3)3 with 1,4‐phenylenediacetic acid (H2PDA) under hydrothermal conditions produced two isostructural lanthanide coordination polymers with the empirical formula [Ln2(PDA)3(H2O)] · 2H2O [Ln = Nd ( 1 ), Sm ( 2 )]. Single‐crystal X‐ray diffraction analyses revealed that both contain one‐dimensionalmetal carboxylato chains, which are further connected by the–CH2C6H4CH2– spacers of PDA2– ligands to yield a three‐dimensional metal‐organic framework. Magnetic susceptibilities of 1 and 2 were measured. The experimental χmT value of both compounds decreases continuously with decreasing temperature over the whole temperature range. The best least‐squares fit of the experimental data of 1 to a theoretical equation in the temperature range of 70–300 K gives the zero‐field splitting parameter Δ = 2.21 cm–1 and the magnetic interaction between the NdIII ions 2zJ′ = –1.97 cm–1, which indicates the presence of antiferromagnetic interaction between the NdIII ions. The experimental χmT value of 2 at 2 K is much smaller than the expected value for two free SmIII ions (6H5/2, g = 2/7) in the ground state, indicating that an antiferromagnetic interaction possibly exists between SmIII ions at low temperature. Fitting the magnetic data of 2 above 110 K based on an equation deduced from the SmIII ion in a monomeric system with free‐ion approximation gave a spin‐orbit coupling parameter λ = 192(2) cm–1  相似文献   

10.
The series of binuclear Cu(II) and Ni(II) complexes with an asymmetrical exchange fragment based on 2,6‐diformyl‐4‐methylphenol bishydrazone has been synthesized for the first time. The compositions and structures of both ligands and its complexes have been established with the data of IR, 1H NMR, and extended X‐ray absorption fine structure (EXAFS) spectroscopical studies as well as magnetic measurements. The structure of [Ni2L3(μ‐Pz)] · 2CH3OH (L = triply deprotonated form of bishydrazone, Pz = pyrazol) was confirmed by X‐ray crystallographic analysis. In this complex, the coordination environment of two nickel ions is quite different, one nickel atom is square‐planar and the other is distorted octahedral coordinated. The values of exchange parameter calculated in terms of HDVV theory have been compared with the features of an asymmetrical exchange fragment's electronic and geometrical structure.  相似文献   

11.
A new cobalt(II) coordination polymer containing 4,4′‐bipyridine and azide as bridging ligand, [CoII(4,4′‐bpy)(N3)2]n ( 1 ) was synthesized under mild hydrothermal conditions and was characterized by single‐crystal X‐ray diffraction studies and magnetic susceptibility measurements. It exhibits an acentric structure, in which cobalt(II) ions are linked through end‐to‐end (EE) azido groups. The 4,4′‐bpy ligands are coordinated on the axial positions of the octahedral environment reinforcing the intermetallic connections and resulting in a network. Circular dichroism spectra of the compound exhibit a maximum negative Cotton effect at 260 nm, which indicates the chiral nature of 1 . Variable temperature magnetic susceptibility measurements in the temperature range 2–300 K reveal the existence of antiferromagnetic couplings in the framework.  相似文献   

12.
SynthesisandCrystalStructureofDinuclearCopperClusterCompound[Cu(dtp)PPh_3]_2ChenQiu-Hua;LuShao-Fang;HuangXiao-Ying(StatekeyLab...  相似文献   

13.
A novel coordination polymer {[Mn(azpy)(NCS)2(MeOH)2] · azpy}n( 1 ) (azpy = 4, 4'‐azopyridine), has been synthesized and characterized by X‐ray diffraction. It consists of a quasi two‐dimensional network structure constructed from 1‐D chains of [Mn(azpy)(NCS)2(MeOH)2]n connected by hydrogen bonds, which creates about 13.6 Å × 17.1 Å of channels. The coordination sphere of the manganese(II) ion is a distorted octahedron. The determination of the variable temperature magnetic susceptibilities (5—300 K) shows the existence of a very weak antiferromagnetic interaction with a J value of —0.03 cm—1.  相似文献   

14.
Two coordination polymers, [Co2(Hcpip)2(phth)]n · 3n(H2O) ( 1 ) and [Mn2(Hcpip)2(phth)]n ( 2 ), {H2cpip = 2‐(2‐carboxyphenyl)imidazo[4,5‐f](1,10)‐ phenanthroline, H2phth = phthalic acid}, were hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. Complex 1 is a 1D chain, in which the dinuclear [Co2(Hcpip)2]2+ units are linked through (phth)2– anions. Complex 2 is a 2D layer structure, which is constructed from the 1D chains bridged by (phth)2– anions. The magnetic properties of 1 and 2 show that the weak ferromagnetic interactions occurred between CoII ions in 1 and a weak antiferromagnetic interactions exist between MnII ions in 2 . These two complexes have good thermal stabilities.  相似文献   

15.
The new copper coordination polymers 2[CuX(μ‐2‐chlor‐opyrazine‐N, N')] (X = Cl ( I ), Br ( II ), 1[CuI(2‐chloropyrazine‐N)] ( III ) and [Cu2I2(2‐chloropyrazine)] ( IV ) has been prepared by the reaction of the copper(I) halides with 2‐chloropyrazine at roomtemperature or under hydrothermal conditions. The crystal structures of the 1:1 compounds I and II consist of zig‐zag CuX single chains running parallel to the crystallographic a‐axis which are linked by the 2‐chloropyrazine spacer molecules to sheets parallel to (010). For the iodine compound III a one‐dimensional structure is found which consists of CuX double chains running parallel to the crystallographic a‐axis. The thermic properties of all compounds were investigated in different gas atmospheres using simultaneously differential thermal analysis and thermogravimetry (DTA‐TG) as well as temperature resolved X‐ray powder diffraction. On heating, the 1:1 compounds I and II decompose directly to the corresponding copper(I) Halides, whereas the thermal decomposition of III occcur via IV as an intermediate.  相似文献   

16.
A double azido‐bridged CuII dinuclear complex with the chelating chiral ligand, [Cu2(L)2(N3)4] ( 1 ) [L = (+)‐2, 2′‐isopropylidene‐bis((4R)‐4‐benzyl‐2‐oxazoline)] was synthesized and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, magnetic measurements, and theoretical studies. The asymmetric double end‐on azido bridges in complex 1 lead to a weak antiferromagnetic behavior with J = –7.4 cm–1. The exchange interactions in complex 1 were investigated by DFT calculations, and the calculated exchange interaction (J = –8.0 cm–1) is in good agreement with the experimental value.  相似文献   

17.
The reaction of 1H‐tetrazole‐1‐acetic acid (Htza) and perchloric acid with cuprous chloride with slow evaporation at room temperature gave a novel 3D porous CuII coordination polymer, [Cu2(tza)4] · ClO4 · 4H2O ( 1 ), (tza = tetrazole‐1‐acetate). The structure exhibits an unusual 3D microporous coordination framework built up by four coordinated CuII nodes and bidentate bridging tza ligands with lvt‐type topology. Furthermore, the magnetic properties of complex 1 were also investigated.  相似文献   

18.
The 2D coordination polymer {[Cu32( pa )242‐OH)83‐OH)8( bibp )8] · (CH3OH)3(H2O)5} was prepared by the solvothermal reaction of Cu(NO3)2 · 3H2O with phthalic acid (H2 pa ) and 4, 4′‐bis(imidazol‐1‐yl)biphenyl ( bibp ). The CuII ions show five different kinds of coordination environments, which are all connected by the pa 2– ion into an interesting 1D carboxylate‐copper chain with rare icosacopper and tetracopper clusters. The 1D chain is further bridged by the bibp ligand to form a 2D layer, which could be viewed as an unprecedented (4, 4) lattice based on rectangular and butterfly‐shaped tetracopper clusters with the ratio of 2:6. The magnetic properties were studied, and the results show antiferromagnetic interaction in the complicated 1D chain.  相似文献   

19.
Reactions of the ligand 2 ‐ MTPP [2‐MTPP = 2‐(methylthio)‐4‐(pyridin‐2‐yl)pyrimidine] with AgNO3 and CuI produced dinuclear silver(I) ( 1 ) and copper(I) ( 2 ) complexes, respectively. Both complexes adopt a chair‐like structure in which two 2 ‐ MTPP ligands and two metal ions are joined together through M–N and M–S coordination bonds. The luminescence properties of both complexes were investigated in solid state at room temperature.  相似文献   

20.
Blue needle—shaped crystals of [Cu(bpy)(H2O)2(C4H4O4)]· 2H2O were obtained by slow evaporation of a methanolic aqueous solution containing a fresh Cu(C4H4O4)· 2H2O precipitate, 4, 4′—bipyridine, and ammonia. Within the complex, the six—coordinated Cu atoms are linked by bis—monodentate gauche succinate anions into chains propagating helically around the [001] axis. The chains are interconnected by 4, 4′—bipyridine ligands into a 3D framework with the crystal H2O molecules located in the channels along the [100], [010] and [110] directions. The Cu2+ ions are in distorted octahedral coordination of two nitrogen and four oxygen atoms (equatorial bonds: Cu—N 1.986(5), 2.015(5)Å; Cu—O 1.950(6), 1.954(6)Å; axial bonds Cu—O: 2.524(9), 2.539(8)Å). Furthermore, the thermal and magnetic behavior of the compound will be discussed. Crystal data: hexagonal, P61 (no. 169), a = 11.066(2)Å, c = 24.965(5)Å, V = 2647.5(8)Å3, Z = 6, R = 0.0528 and wR2 = 0.1103 for 1426 observed reflections (Fo2 > 2σ(Fo2)) out of 2170 unique reflections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号