首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We improve the available necessary conditions and sufficient conditions for the Dstability and additive D-stability of matrices. We define these dynamical properties with respect to a finite parallelepiped and propose an algorithm for checking them. For a particular class of matrices called Svicobians, we obtain some constructive necessary and sufficient conditions for Dstabilizability, D-stability, and additive D-stability.  相似文献   

2.
In this paper, we are mainly concerned with 2 types of constrained matrix equation problems of the form AXB=C, the least squares problem and the optimal approximation problem, and we consider several constraint matrices, such as general Toeplitz matrices, upper triangular Toeplitz matrices, lower triangular Toeplitz matrices, symmetric Toeplitz matrices, and Hankel matrices. In the first problem, owing to the special structure of the constraint matrix , we construct special algorithms; necessary and sufficient conditions are obtained about the existence and uniqueness for the solutions. In the second problem, we use von Neumann alternating projection algorithm to obtain the solutions of problem. Then we give 2 numerical examples to demonstrate the effectiveness of the algorithms.  相似文献   

3.
This article deals with the analytic and numerical stability of numerical methods for a parabolic partial differential equation with piecewise continuous arguments of alternately retarded and advanced type. First, application of the theory of separation of variables in matrix form and the Fourier method, the necessary and sufficient condition under which the analytic solution is asymptotically stable is derived. Then, the θ‐methods are applied to solve the corresponding initial value problem, the sufficient conditions for the asymptotic stability of numerical methods are obtained. Finally, several numerical examples are presented to support the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 531–545, 2017  相似文献   

4.
Hermitian and unitary matrices are two representatives of the class of normal matrices whose full eigenvalue decomposition can be stably computed in quadratic computing complexity once the matrix has been reduced, for instance, to tridiagonal or Hessenberg form. Recently, fast and reliable eigensolvers dealing with low‐rank perturbations of unitary and Hermitian matrices have been proposed. These structured eigenvalue problems appear naturally when computing roots, via confederate linearizations, of polynomials expressed in, for example, the monomial or Chebyshev basis. Often, however, it is not known beforehand whether or not a matrix can be written as the sum of a Hermitian or unitary matrix plus a low‐rank perturbation. In this paper, we give necessary and sufficient conditions characterizing the class of Hermitian or unitary plus low‐rank matrices. The number of singular values deviating from 1 determines the rank of a perturbation to bring a matrix to unitary form. A similar condition holds for Hermitian matrices; the eigenvalues of the skew‐Hermitian part differing from 0 dictate the rank of the perturbation. We prove that these relations are linked via the Cayley transform. Then, based on these conditions, we identify the closest Hermitian or unitary plus rank k matrix to a given matrix A, in Frobenius and spectral norm, and give a formula for their distance from A. Finally, we present a practical iteration to detect the low‐rank perturbation. Numerical tests prove that this straightforward algorithm is effective.  相似文献   

5.
We analyze an algorithm for computing a skew‐Hermitian logarithm of a unitary matrix and also skew‐Hermitian approximate logarithms for nearly unitary matrices. This algorithm is very easy to implement using standard software, and it works well even for unitary matrices with no spectral conditions assumed. Certain examples, with many eigenvalues near ? 1, lead to very non‐Hermitian output for other basic methods of calculating matrix logarithms. Altering the output of these algorithms to force skew‐Hermitian output creates accuracy issues, which are avoided by the considered algorithm. A modification is introduced to deal properly with the J‐skew‐symmetric unitary matrices. Applications to numerical studies of topological insulators in two symmetry classes are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, two accelerated divide‐and‐conquer (ADC) algorithms are proposed for the symmetric tridiagonal eigenvalue problem, which cost O(N2r) flops in the worst case, where N is the dimension of the matrix and r is a modest number depending on the distribution of eigenvalues. Both of these algorithms use hierarchically semiseparable (HSS) matrices to approximate some intermediate eigenvector matrices, which are Cauchy‐like matrices and are off‐diagonally low‐rank. The difference of these two versions lies in using different HSS construction algorithms, one (denoted by ADC1) uses a structured low‐rank approximation method and the other (ADC2) uses a randomized HSS construction algorithm. For the ADC2 algorithm, a method is proposed to estimate the off‐diagonal rank. Numerous experiments have been carried out to show their stability and efficiency. These algorithms are implemented in parallel in a shared memory environment, and some parallel implementation details are included. Comparing the ADCs with highly optimized multithreaded libraries such as Intel MKL, we find that ADCs could be more than six times faster for some large matrices with few deflations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents new sufficient conditions for the stability of interval matrices. An iterative algorithm, based on the Lyapunov stability approach, is developed. In this way, the stability bounds are increased substantially over the ones recently reported in the literature. Three numerical examples are given to demonstrate the merits of the proposed approach.This research was supported in part by the US-Yugoslav Joint Fund for Scientific and Technological Cooperation in cooperation with DOE under Grant No. PP-727.  相似文献   

8.
We propose a new inertia‐revealing factorization for sparse symmetric matrices. The factorization scheme and the method for extracting the inertia from it were proposed in the 1960s for dense, banded, or tridiagonal matrices, but they have been abandoned in favor of faster methods. We show that this scheme can be applied to any sparse symmetric matrix and that the fill in the factorization is bounded by the fill in the sparse QR factorization of the same matrix (but is usually much smaller). We describe our serial proof‐of‐concept implementation and present experimental results, studying the method's numerical stability and performance.  相似文献   

9.
An E–W matrix M is a ( ? 1, 1)‐matrix of order , where t is a positive integer, satisfying that the absolute value of its determinant attains Ehlich–Wojtas' bound. M is said to be of skew type (or simply skew) if is skew‐symmetric where I is the identity matrix. In this paper, we draw a parallel between skew E–W matrices and skew Hadamard matrices concerning a question about the maximal determinant. As a consequence, a problem posted on Cameron's website [7] has been partially solved. Finally, codes constructed from skew E–W matrices are presented. A necessary and sufficient condition for these codes to be self‐dual is given, and examples are provided for lengths up to 52.  相似文献   

10.
11.
A sub‐Stiefel matrix is a matrix that results from deleting simultaneously the last row and the last column of an orthogonal matrix. In this paper, we consider a Procrustes problem on the set of sub‐Stiefel matrices of order n. For n = 2, this problem has arisen in computer vision to solve the surface unfolding problem considered by R. Fereirra, J. Xavier and J. Costeira. An iterative algorithm for computing the solution of the sub‐Stiefel Procrustes problem for an arbitrary n is proposed, and some numerical experiments are carried out to illustrate its performance. For these purposes, we investigate the properties of sub‐Stiefel matrices. In particular, we derive two necessary and sufficient conditions for a matrix to be sub‐Stiefel. We also relate the sub‐Stiefel Procrustes problem with the Stiefel Procrustes problem and compare it with the orthogonal Procrustes problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, we examine the possible orders of t‐subset‐regular self‐complementary k‐uniform hypergraphs, which form examples of large sets of two isomorphic t‐designs. We reformulate Khosrovshahi and Tayfeh–Rezaie's necessary conditions on the order of these structures in terms of the binary representation of the rank k, and these conditions simplify to a more transparent relation between the order n and rank k in the case where k is a sum of consecutive powers of 2. Moreover, we present new constructions for 1‐subset‐regular self‐complementary uniform hypergraphs, and prove that these necessary conditions are sufficient for all k, in the case where t = 1. © 2011 Wiley Periodicals, Inc. J Combin Designs 19: 439‐454, 2011  相似文献   

13.
We consider the problem of compressed sensing with a coherent tight frame and design an iteratively reweighted least squares algorithm to solve it. To analyze the problem, we propose a sufficient null space property under a tight frame (sufficient D‐NSP). We show that, if a measurement matrix A satisfies the sufficient D‐NSP of order s, then an s‐sparse signal under the tight frame can be exactly recovered. Furthermore, if A satisfies the restricted isometric property with tight frame D of order 2bs, then it also satisfies the sufficient D‐NSP of order as with a < b and b sufficiently large. We prove the convergence of the algorithm based on the sufficient D‐NSP and give the upper error bounds. In numerical experiments, we use the discrete cosine transform, discrete Fourier transform, and Haar wavelets to verify the effectiveness of this algorithm. With increasing measurement number, the signal‐to‐noise ratio increases monotonically.  相似文献   

14.
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order Ox4 + Δt2 ? α) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.  相似文献   

15.
Let D 2p be a dihedral group of order 2p, where p is an odd integer. Let ZD 2p be the group ring of D 2p over the ring Z of integers. We identify elements of ZD 2p and their matrices of the regular representation of ZD 2p . Recently we characterized the Hadamard matrices of order 28 ([6] and [7]). There are exactly 487 Hadamard matrices of order 28, up to equivalence. In these matrices there exist matrices with some interesting properties. That is, these are constructed by elements of ZD 6. We discuss relation of ZD 2p and Hadamard matrices of order n=8p+4, and give some examples of Hadamard matrices constructed by dihedral groups.  相似文献   

16.
This article derives from first principles a definition of equivalence for higher‐dimensional Hadamard matrices and thereby a definition of the automorphism group for higher‐dimensional Hadamard matrices. Our procedure is quite general and could be applied to other kinds of designs for which there are no established definitions for equivalence or automorphism. Given a two‐dimensional Hadamard matrix H of order ν, there is a Product Construction which gives an order ν proper n‐dimensional Hadamard matrix P(n)(H). We apply our ideas to the matrices P(n)(H). We prove that there is a constant c > 1 such that any Hadamard matrix H of order ν > 2 gives rise via the Product Construction to cν inequivalent proper three‐dimensional Hadamard matrices of order ν. This corrects an erroneous assertion made in the literature that ”P(n)(H) is equivalent to “P(n)(H′) whenever H is equivalent to H′.” We also show how the automorphism group of P(n)(H) depends on the structure of the automorphism group of H. As an application of the above ideas, we determine the automorphism group of P(n)(Hk) when Hk is a Sylvester Hadamard matrix of order 2k. For ν = 4, we exhibit three distinct families of inequivalent Product Construction matrices P(n)(H) where H is equivalent to H2. These matrices each have large but non‐isomorphic automorphism groups. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 507–544, 2008  相似文献   

17.
This paper studies the structural monostability and structural cycle‐stability of Boolean networks (BNs). Firstly, the structural‐equivalent Boolean networks are converted to the algebraic forms by using the semitensor product of matrices. Secondly, the concepts of structural monostability and structural cycle‐stability for Boolean networks are proposed. On the basis of the algebraic forms of structural‐equivalent Boolean networks, some necessary and sufficient conditions are presented for the structural monostability and structural cycle‐stability of Boolean networks. Finally, an illustrative example is worked out to show the effectiveness of the obtained results.  相似文献   

18.
In this note we consider the question under which conditions all entries of the matrix I???(I?+?X)?1 are nonnegative in case matrix X is a real positive definite matrix. Sufficient conditions are presented as well as some necessary conditions. One sufficient condition is that matrix X ?1 is an inverse M-matrix. A class of matrices for which the inequality holds is presented.  相似文献   

19.
The split and hyperbolic (countercomplex) octonions are eight‐dimensional nonassociative algebras over the real numbers, which are in the form , where em's have different properties for them. The main purpose of this paper is to define the split‐type octonion and its matrix whose inputs are split‐type octonions and give some properties for them by using the real quaternions, split, and hyperbolic (countercomplex) octonions. On the other hand, to make some definitions, we present some operations on the split‐type octonions. Also, we show that every split‐type octonions can be represented by 2 × 2 real quaternion matrix and 4 × 4 complex number matrix. The information about the determinants of these matrix representations is also given. Besides, the main features of split‐type octonion matrix concept are given by using properties of  real quaternion matrices. Then, 8n × 8nreal matrix representations of split‐type octonion matrices are shown, and some algebraic structures are examined. Additionally, we introduce real quaternion adjoint matrices of split‐type octonion matrices. Moreover, necessary and sufficient conditions and definitions are given for split‐type octonion matrices to be special split‐type octonion matrices. We describe some special split‐type octonion matrices. Finally, oct‐determinant of split‐type octonion matrices is defined. Definitive and understandable examples of all definitions, theorems, and conclusions were given for a better understanding of all these concepts.  相似文献   

20.
The object of this paper is to present the numerical solution of the time‐space fractional telegraph equation. The proposed method is based on the finite difference scheme in temporal direction and Fourier spectral method in spatial direction. The fast Fourier transform (FFT) technique is applied to practical computation. The stability and convergence analysis are strictly proven, which shows that this method is stable and convergent with (2?α) order accuracy in time and spectral accuracy in space. Moreover, the Levenberg‐Marquardt (L‐M) iterative method is employed for the parameter estimation. Finally, some numerical examples are given to confirm the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号