共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(2):229-236
The benzaldehyde derivatives, such as 2,4‐dimethoxy benzaldehyde (PC1) and p‐anisaldehyde (PC2), were successfully used as photoredox catalysts (PCs) in combination with typical RAFT agent 4‐cyano‐4‐(phenylcarbonothioylthio)pentanoic acid (CTP) for the controlled photoinduced electron transfer RAFT polymerization (PET‐RAFT) of methyl methacrylate (MMA) and benzyl methacrylate (BnMA) at room temperature. The kinetics of the polymerizations showed first order with respect to monomer conversions. Besides, the average number molecular weights (Mn) of the produced polymers increased linearly with the monomer conversions and kept relatively narrow polydispersity (PDI = Mw/Mn). For example, the Mn of PMMA increased from about 3400 to 17,300 g mol−1 with the increasing in monomer conversion from 11% to 85%, and the PDI maintained around 1.36. The living features of polymerizations with the PC1 and PC2 as catalysts have also been further supported by chain extension and synthesis of PMMA‐b‐PBnMA diblock copolymer. As a result, the simplicity and efficiency of benzaldehyde derivatives catalyzed PET‐RAFT polymerization have been demonstrated under mild conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 229–236 相似文献
2.
3.
Solène I. Cauët Karen L. Wooley 《Journal of polymer science. Part A, Polymer chemistry》2010,48(12):2517-2524
The kinetics of the RAFT polymerization of p‐acetoxystyrene using a trithiocarbonate chain transfer agent, S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate, DDMAT, was investigated. Parameters including temperature, percentage initiator, concentration, monomer‐to‐chain transfer agent ratio, and solvent were varied and their impact on the rate of polymerization and quality of the final polymer examined. Linear kinetic plots, linear increase of Mn with monomer conversion, and low final molecular weight dispersities were used as criteria for the selection of optimized polymerization conditions, which included a temperature of 70 or 80 °C with 10 mol % AIBN initiator in bulk for low conversions or in 1,4‐dioxane at a monomer‐to‐solvent volume ratio of 1:1 for higher conversions This study opens the way for the use of DDMAT as a chain transfer agent for RAFT polymerization to incorporate p‐acetoxystyrene together with other functional monomers into well‐defined copolymers, block copolymers, and nanostructures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2517–2524, 2010 相似文献
4.
Niels ten Brummelhuis Marcus Weck 《Journal of polymer science. Part A, Polymer chemistry》2014,52(11):1555-1559
Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization was used to control the alternating copolymerization of styrene and 2,3,4,5,6‐pentaflurostyrene. The RAFT polymerization yields a high degree of control over the molecular weight of the polymers and does not significantly influence the reactivity ratios of the monomers. The controlled free‐radical polymerization could be initiated using AIBN at elevated temperatures or using a redox couple (benzoyl peroxide/N,N‐dimethylaniline) at room temperature, while maintaining control over molecular weight and dispersity. The influence of temperature and solvent on the molecular weight distribution and reactivity ratios were investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1555–1559 相似文献
5.
Heng Zhou Chonggao Liu Chengqiang Gao Yaqing Qu Keyu Shi Wangqing Zhang 《Journal of polymer science. Part A, Polymer chemistry》2016,54(11):1517-1525
Polymerization‐induced self‐assembly of block copolymer through dispersion RAFT polymerization has been demonstrated to be a valid method to prepare block copolymer nano‐objects. However, volatile solvents are generally involved in this preparation. Herein, the in situ synthesis of block copolymer nano‐objects of poly(ethylene glycol)‐block‐polystyrene (PEG‐b‐PS) in the ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIN][PF6]) through the macro‐RAFT agent mediated dispersion polymerization is investigated. It is found that the dispersion RAFT polymerization of styrene in the ionic liquid of [BMIN][PF6] runs faster than that in the alcoholic solvent, and the dispersion RAFT polymerization in the ionic liquid affords good control over the molecular weight and the molecular weight distribution of the PEG‐b‐PS diblock copolymer. The morphology of the in situ synthesized PEG‐b‐PS diblock copolymer nano‐objects, e.g., nanospheres and vesicles, in the ionic liquid is dependent on the polymerization degree of the solvophobic block and the concentration of the fed monomer, which is somewhat similar to those in alcoholic solvent. It is anticipated that the dispersion RAFT polymerization in ionic liquid broads a new way to prepare block copolymer nano‐objects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1517–1525 相似文献
6.
Zhenke Wei Xiaojuan Hao Zhihua Gan Timothy C. Hughes 《Journal of polymer science. Part A, Polymer chemistry》2012,50(12):2378-2388
Soluble hyperbranched glycopolymers were prepared by copolymerization of glycan monomers with reversible addition‐fragmentation chain transfer polymerization (RAFT) inimers in a simple one‐pot reaction. Two novel RAFT inimers, 2‐(methacryloyloxy)ethyl 4‐cyano‐4‐(phenylcarbonothioylthio)pentanoate (MAE‐CPP) and 2‐(3‐(benzylthiocarbonothioylthio)propanoyloxy)ethyl acrylate (BCP‐EA) were synthesized and used to prepare hyperbranched glycopolymers. Two types of galactose‐based saccharide monomers, 6‐O‐methacryloyl‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (proGal‐M) and 6‐O‐(2′‐acrylamido‐2′‐methylpropanoate)‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (proGal‐A), containing a methacrylate and an acrylamide group, respectively, were also synthesized and polymerized under the mediation of the MAE‐CPP and BCP‐EA inimers, respectively. In addition, hyperbranched poly(proGal‐M), linear poly(proGal‐A), and hyperbranched poly(proGal‐A) were generated and their polymerization kinetics were studied and compared. An unexpected difference was observed in the kinetics between the two monomers during polymerization: the relationship between polymerization rate and concentration of inimer was totally opposite in the two monomer–inimer systems. Branching analysis was conducted by using degree of branching (DB) as the measurement parameter. As expected, a higher DB occurred with increased inimer content. Furthermore, these polymers were readily deprotected by hydrolysis in trifluoroacetic acid solution resulting in water‐soluble polymers. The resulting branched glycopolymers have potential as biomimetics of polysaccharides. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
7.
Meiliana Siauw Brian S. Hawkett Sébastien Perrier 《Journal of polymer science. Part A, Polymer chemistry》2012,50(1):187-198
We demonstrate the ability of the reversible addition‐fragmentation chain transfer (RAFT) process to produce well‐defined block co‐oligomers for which each block has a narrow molecular weight distribution and degrees of polymerization ranging from 2 to 33. We exploit RAFT versatility to control the structure of the co‐oligomers and produce amphiphilic block co‐oligomers of styrene, acrylic acid and ethylene glycol. A detailed study shows that the amphiphilic diblock co‐oligomers self‐assemble in solution and form micelles or particles, depending on the hydrophobicity of the diblock. These oligomers present an excellent alternative to traditional amphiphilic molecules, by combining the properties of polymers with those of single molecule surfactants. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
8.
Sbastien Perrier Pittaya Takolpuckdee 《Journal of polymer science. Part A, Polymer chemistry》2005,43(22):5347-5393
Among the living radical polymerization techniques, reversible addition–fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerizations appear to be the most versatile processes in terms of the reaction conditions, the variety of monomers for which polymerization can be controlled, tolerance to functionalities, and the range of polymeric architectures that can be produced. This review highlights the progress made in RAFT/MADIX polymerization since the first report in 1998. It addresses, in turn, the mechanism and kinetics of the process, examines the various components of the system, including the synthesis paths of the thiocarbonyl‐thio compounds used as chain‐transfer agents, and the conditions of polymerization, and gives an account of the wide range of monomers that have been successfully polymerized to date, as well as the various polymeric architectures that have been produced. In the last section, this review describes the future challenges that the process will face and shows its opening to a wider scientific community as a synthetic tool for the production of functional macromolecules and materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:5347–5393, 2005 相似文献
9.
Di Zhou Xiulin Zhu Jian Zhu Zhenping Cheng 《Journal of polymer science. Part A, Polymer chemistry》2008,46(18):6198-6205
Fluorescence end‐labeled polystyrene (PS) with heteroaromatic carbazole or indole group were prepared conveniently via reversible addition‐fragmentation chain transfer (RAFT) polymerization using dithiocarbamates, ethyl 2‐(9H‐carbazole‐9‐carbonothioylthio)propanoate (ECCP) and benzyl 2‐phenyl‐1H‐indole‐1‐carbodithioate (BPIC) as RAFT agents. The end functionality of obtained PS with different molecular weights was high. The steady‐state and the time‐resolved fluorescence techniques had been used to study the fluorescence behaviors of obtained end‐labeled PS. The fluorescence of dithiocarbamates resulting PS in solid powder cannot be monitored; however, they exhibited structured absorptions and emissions in solvent DMF and the fluorescence lifetimes of PS had no obvious change with molecular weights increasing. These observations suggested that the polymer chains were possibly stretched adequately in DMF, that is, the fluorescence end group was exposed into solvent molecules and little quenching of excited state occurred upon incorporation into polymer chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6198–6205, 2008 相似文献
10.
Deqin Fan Junpo He Jiangtao Xu Wei Tang Yang Liu Yuliang Yang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(7):2260-2269
Copolymerization of styrene and acrylonitrile was carried out via reversible addition‐fragmentation chain transfer process (RAFT) in the presence of cumyl dithiobenzoate with AIBN as initiator. Copolymerization proceeded in a controlled/“living” fashion, and the copolymer composition depended on the feed ratio of monomer pairs. Block copolymers comprising styrene and acrylonitrile (SAN) segments and various functional blocks were synthesized through chain extension using the first blocks as macromolecular chain transfer agents (macroCTAs). Since the polymerization of both blocks proceeded through the RAFT process, the resulting block copolymers exhibited relatively narrow molecular weight distribution, with polydispersity indices in the range of 1.29–1.46. Gel permeation chromatography (GPC), and 1H NMR and FTIR measurements confirmed the successful synthesis of the functionalized block copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2260–2269, 2006 相似文献
11.
Chun‐Yan Hong Ye‐Zi You Cai‐Yuan Pan 《Journal of polymer science. Part A, Polymer chemistry》2006,44(8):2419-2427
In this study, we grafted water‐soluble biocompatible polymer, poly(N‐(2‐hydroxypropyl)methacrylamide) (PHPMA), onto the surface of multi‐walled carbon nanotubes (MWNTs). The reversible addition‐fragmentation chain transfer (RAFT) agents, dithioesters, were successfully immobilized onto the surface of MWNTs first, PHPMA chains were then subsequently grafted onto MWNTs via RAFT polymerization by using dithioesters immobilized on MWNTs as RAFT agent. FTIR, XPS, 1H NMR, Raman and TGA were used to characterize the resulting products and to determine the content of water‐soluble PHPMA chains in the product. The MWNTs grafted with PHPMA chains have good solubility in distilled water, PBS buffer, and methanol. TEM images of the samples provide direct evidence for the formation of a nanostructure that MWNTs coated with polymer layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2419–2427, 2006 相似文献
12.
Mehmet Atilla Tasdelen Yasemin Yuksel Durmaz Bunyamin Karagoz Niyazi Bicak Yusuf Yagci 《Journal of polymer science. Part A, Polymer chemistry》2008,46(10):3387-3395
Phenacyl morpholine‐4‐dithiocarbamate is synthesized and characterized. Its capability to act as both a photoiniferter and reversible addition fragmentation chain transfer agent for the polymerization of styrene is examined. Polymerization carried out in bulk under ultra violet irradiation at above 300 nm at room temperature shows controlled free radical polymerization characteristics up to 50% conversions and produces well‐defined polymers with molecular weights close to those predicted from theory and relatively narrow poyldispersities (Mw/Mn ~ 1.30). End group determination and block copolymerization with methyl acrylate suggest that morpholino dithiocarbamate groups were attained at the end of the polymer. Photolysis and polymerization studies revealed that polymerization proceeds via both reversible termination and RAFT mechanisms. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3387–3395, 2008 相似文献
13.
Meihan Dan Fei Huo Xu Zhang Xiaohui Wang Wangqing Zhang 《Journal of polymer science. Part A, Polymer chemistry》2013,51(7):1573-1584
The dispersion reversible addition‐fragmentation chain transfer (RAFT) polymerization of 4‐vinylpyridine in toluene in the presence of the polystyrene dithiobenzoate (PS‐CTA) macro‐RAFT agent with different chain length is discussed. The RAFT polymerization undergoes an initial slow homogeneous polymerization and a subsequent fast heterogeneous one. The RAFT polymerization rate is dependent on the PS‐CTA chain length, and short PS‐CTA generally leads to fast RAFT polymerization. The dispersion RAFT polymerization induces the self‐assembly of the in situ synthesized polystyrene‐b‐poly(4‐vinylpyridine) block copolymer into highly concentrated block copolymer nano‐objects. The PS‐CTA chain length exerts great influence on the particle nucleation and the size and morphology of the block copolymer nano‐objects. It is found, short PS‐CTA leads to fast particle nucleation and tends to produce large‐sized vesicles or large‐compound micelles, and long PS‐CTA leads to formation of small‐sized nanospheres. Comparison between the polymerization‐induced self‐assembly and self‐assembly of block copolymer in the block‐selective solvent is made, and the great difference between the two methods is demonstrated. The present study is anticipated to be useful to reveal the chain extension and the particle growth of block copolymer during the RAFT polymerization under dispersion condition. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
14.
Firdaus Yhaya Arlingga Sutinah Andrew M. Gregory Mingtao Liang Martina H. Stenzel 《Journal of polymer science. Part A, Polymer chemistry》2012,50(19):4085-4093
The polymerization of vinyl methacrylate (VMA) allows the synthesis of polymers with pendant double bonds. When this polymerization was undertaken in the presence of 2‐cyanopropyl dithiobenzoate as reversible addition–fragmentation chain transfer agent, it led almost exclusively to vinylester functional sidegroups, which were available for further reactions. The vinylester functionality could not be functionalized using common thiol‐ene catalysts, but could be activated using Candida antarctica lipase B (CAL‐B) (Novozyme 435). The reaction between PVMA and various thiols in N, N‐dimethyl formamide in the presence of CAL‐B led exclusively to the formation of the anti‐Markovnikov product. The rate of reaction between PVMA and 1‐butanethiol was monitored using 1H NMR. The reaction was complete within 72 h. Similar results were obtained with other small‐sized thiols such as 2‐mercaptoethanol, 3‐mercaptopropionic acid, and 2‐(trimethylsilyl)ethanethiol, while more bulky thiols, such as secondary thiols, thiols with long alkyl chains, and sterically demanding thiols, such as mono(6‐deoxy‐6‐mercapto)‐β‐cyclodextrin, only led to lower conversions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
15.
Jared Skey Rachel K. O'reilly 《Journal of polymer science. Part A, Polymer chemistry》2008,46(11):3690-3702
Homopolymers of tbutyl acrylate (PtBuA) and a monosubstituted acrylamide (PAM) having an amino acid moiety in the side chain, N‐acryloyl‐(L )‐phenylalanine methyl ester 1 , have been synthesized by Reversible Addition‐Fragmentation Chain Transfer (RAFT) polymerization. Diblock copolymers of these homopolymers were also synthesized by chain extending PtBuA with monomer 1 and after modification, using simple acid deprotection chemistries of the acrylate block to afford a poly (acrylic acid) block, an optically active amphiphilic diblock copolymer was isolated. The optically active amphiphilic diblock copolymers, which contain chiral amino acid moieties within the hydrophobic segment, were then self‐assembled to afford spherical micelles which were subsequently crosslinked throughout the shell layer to afford robust chiral nanoparticles. The hydrodynamic diameters (Dh) of the block copolymer micelles and nanoparticles were measured by dynamic light scattering (DLS) and the dimensions of the nanoparticles were determined using tapping‐mode atomic force microscopy (AFM) and transmission electron microscopy (TEM). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3690–3702, 2008 相似文献
16.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(14):1593-1599
The synthesis and characterization of innovative difunctional styrene‐based monomers and their cyclopolymerization is reported. Difunctional silyl‐based protecting groups with different steric hindrance (either methyl/phenyl or phenyl/phenyl) are used as “tethers” for two 4‐vinylbenzyl reactive moieties. We demonstrate that efficient cyclopolymerization, performed under free‐radical conditions or RAFT‐mediated, takes place for both monomers. RAFT polymerization allows excellent control of Mn and higher degree of polymerization when compared to uncontrolled radical polymerization, yet not optimal control of dispersities. The silyl tethering group could be removed to afford poly(p‐hydroxymethylstyrene). Thermogravimetric analysis (TGA) demonstrates the thermal robustness of the new cyclopolymers, and gives an insight on the ability of the corresponding deprotected polymer to chelate metals ions. The described strategy opens possibilities to achieve sequence control through a cyclopolymerization/tether removal strategy, when having two suitable aromatic systems with opposing electronic character and reactivities in chain cyclopolymerization. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1593–1599 相似文献
17.
Hongjuan Jiang Lifen Zhang Jian Qin Wei Zhang Zhenping Cheng Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2012,50(19):4103-4109
Well‐defined bimodal molecular weight distribution (MWD) polystyrene and polystyrene‐b‐poly(acrylonitrile) were successfully synthesized using a pair of mono/difunctional trithiocarbonate RAFT agents 1 and 2 via one‐pot RAFT polymerization. The kinetics of RAFT polymerization for styrene in bulk with a molar ratio of [St]0:[AIBN]0:[ 1 ]0:[ 2 ]0 = 1200:1:2.5:2.5 was studied at 75°C. The results indicated that the system showed excellent controllability and “living” characteristics to both higher and lower molecular weight fractions, providing an efficient and facile way to producing bimodal MWD (co)polymers with both controlled molecular weight (MW) and MWD in molecular level, and the plausible mechanism was discussed in this work. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
18.
Naoki Nomura Keiji Shinoda Akinori Takasu Kenji Nagata Katsuhiro Inomata 《Journal of polymer science. Part A, Polymer chemistry》2013,51(3):534-545
This study deals with control of the molecular weight and molecular weight distribution of poly(vinyl acetate) by iodine‐transfer radical polymerization and reversible addition‐fragmentation transfer (RAFT) emulsion polymerizations as the first example. Emulsion polymerization using ethyl iodoacetate as the chain transfer agent more closely approximated the theoretical molecular weights than did the free radical polymerization. Although 1H NMR spectra indicated that the peaks of α‐ and ω‐terminal groups were observed, the molecular weight distributions show a relatively broad range (Mw/Mn = 2.2–4.0). On the other hand, RAFT polymerizations revealed that the dithiocarbamate 7 is an excellent candidate to control the polymer molecular weight (Mn = 9.1 × 103, Mw/Mn = 1.48), more so than xanthate 1 (Mn = 10.0 × 103, Mw/Mn = 1.89) under same condition, with accompanied stable emulsions produced. In the Mn versus conversion plot, Mn increased linearly as a function of conversion. We also performed seed‐emulsion polymerization using poly(nonamethylene L ‐tartrate) as the chiral polyester seed to fabricate emulsions with core‐shell structures. The control of polymer molecular weight and emulsion stability, as well as stereoregularity, is also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
19.
Liping Yu Zhengbiao Zhang Xinrong Chen Wei Zhang Jianhong Wu Zhenping Cheng Jian Zhu Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2008,46(2):682-691
A novel optically active monomer, 6‐{4‐[4‐(1‐phenyl‐1H‐tetrazol‐5‐yloxy)‐phenylazo] ‐phenoxy}‐hexyl methacrylate (PTPPHMA) bearing tetrazole and azobenzol moieties, was synthesized and polymerized by reversible addition‐fragmentation chain transfer (RAFT) polymerization using 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as the RAFT agent and 2, 2′‐azobis(isobutyronitrile) (AIBN) as the initiator. Well‐defined optically active photochromic polyPTPPHMA(PPTPPHMA) was obtained. “Living”/controlled characteristics were observed in the polymerization: well‐controlled molecular weights (Mns), narrow molecular weight distributions (Mw/Mn) of the polymers and successful chain‐extension of PPTPPHMA with styrene (St) as the second monomer. The photochemical interconversion between trans and cis isomers of PPTPPHMA in N,N′‐dimethyl formamide (DMF) solution was explored under irradiation of ultraviolet light. The photoinduced birefringence on the thin films of PPTPPHMA was investigated. A maximum birefringence of 0.1 was obtained, and no significant change of profiles of the birefringence after several cycles of writing/erasing/rewriting sequences was observed. The surface‐relief‐gratings (SRGs) were induced on the polymer films by interference of Kr+ laser beams at 413.1 nm with 35 mW/cm2 intensity, the diffraction efficiencies from SRGs were measured to be in the range of 2.0–2.5%. The atomic force microscopy (AFM) results showed the gratings produced on the surfaces of the polymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 682–691, 2008 相似文献
20.
Chun‐Yan Hong Ye‐Zi You Jun Liu Cai‐Yuan Pan 《Journal of polymer science. Part A, Polymer chemistry》2005,43(24):6379-6393
A new reversible addition‐fragmentation chain transfer (RAFT) agent, dendritic polyester with 16 dithiobenzoate terminal groups, was prepared and used in the RAFT polymerization of styrene (St) to produce star polystyrene (PSt) with a dendrimer core. It was found that this polymerization was of living characters, the molecular weight of the dendrimer‐star polymers could be controlled and the polydispersities were narrow. The dendrimer‐star block copolymers of St and methyl acrylate (MA) were also prepared by the successive RAFT polymerization using the dendrimer‐star PSt as macro chain transfer agent. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6379–6393, 2005 相似文献