首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, despite remarkable progress in developing bone tissue engineering products, the fabrication of an ideal scaffold that could meet the main criteria, such as providing mechanical properties and suitable biostability as well as mimicking the bone extracellular matrix, still seems challenging. In this regard, utilizing combinatorial approaches seems more beneficial. Here, we aim to reinforce the mechanical characteristics of gelatin hydrogel via a combination of Genipin‐based chemical cross‐linking and incorporation of the poly l ‐lactic acid (PLLA) nanocylinders for application as bone scaffolds. Amine‐functionalized nanocylinders are prepared via the aminolysis procedure and incorporated in gelatin hydrogel. The nanocylinder content (0, 1, 2, 3, and 4 wt%) and cross‐linking density (0.1, 0.5, and 1 wt/vol%) are optimized to achieve suitable morphology, swelling ratio, degradation rate, and mechanical behaviors. The results indicate that hydrogel scaffold cross‐linking by 0.5 wt% of Genipin shows optimized morphological feathers with a pore size of around 300 to 500 μm as well as an average degradation rate (40.09% ± 3.08%) during 32 days. Besides, the incorporation of 3 wt% PLLA nanocylinders into the cross‐linked gelatin scaffold provides an optimized mechanical reinforcement as compressive modulus, and compressive strength show a 4‐ and 2.6‐fold increase, respectively. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay indicates that the scaffold does not have any cytotoxicity effect. In conclusion, gelatin composite reinforced with 3 wt% PLLA nanocylinders cross‐linked via 0.5 wt/vol% Genipin is suggested as a potential scaffold for bone tissue engineering applications.  相似文献   

2.
A series of new 2‐methyl‐2‐[(1,3‐Diethyl‐2,6‐dioxo‐2,3,6,7‐tetrahydro‐1H‐purin‐8‐yl)thio]‐N‐ substituted arylacetamides were synthesized. The antitumor activity of these purine based compounds were evaluated on breast cancer (MCF7) and leukemic cancer (K562) cell lines via cell viability assay utilizing the tetrazolium dye 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT). These results were substantiated using computer docking experiments (LigandFit docking engine and PMF scoring function) which predict that the antitumor activity of these new compounds may be attributable to their abilities to effectively bind and block oncogenic tyrosine kinases, particularly bcr/abl.  相似文献   

3.
We report dual pH‐responsive microcapsules manufactured by combining electrostatic droplets (ESD) and microfluidic droplets (MFD) techniques to produce monodisperse core (alginate)‐shell (chitosan) structure with dual pH‐responsive drug release function. The fabricated core‐shell microcapsules were size controllable by tuning the synthesis parameters of the ESD and MFD systems, and were responsive in both acidic and alkaline environment, We used two model drugs (ampicillin loaded in the chitosan shell and diclofenac loaded in the alginate core) for drug delivery study. The results show that core‐shell structure microcapsules have better drug release efficiency than respective core or shell particles. A biocompatibility test showed that the core‐shell structure microcapsules presented positive cell viability (above 80%) when evaluated by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The results indicate that the synthesized core‐shell microcapsules were a potential candidate of dual‐drug carriers.  相似文献   

4.
A three‐layered fibrous scaffold composed of fibers of different diameters in each layer was fabricated in correspondence with the structure of the blood vessels. Effect of solution and electrospinning parameters on morphology and diameters of the fibers were investigated by scanning electron microscopy (SEM), for each layer. The SEM images showed that 18% poly (lactic‐co‐glycolic acid) (PLGA)‐gelatin‐chitosan in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP)/acid acetic solution resulted in bead‐free fibers for the outer layer. For the middle layer, 18% PLGA‐gelatin in HFIP at 13 kV with 13 cm needle to collector distance was chosen as the optimum condition. SEM imaging demonstrated that by increasing graphene content from 0.5 to 2 wt% in the inner layer (as an electrically conductive/platelet anti‐adhesion material), the fiber diameter decreased from 324.01 ± 58.90 to 288.59 ± 70.77 nm. The effect of gelatin crosslinking on the microstructure of the fibers was also examined. Shrinkage ratio decreased from 57 to below 21% upon crosslinking of the three‐layered scaffold in exposure to vapor of 50% glutaraldehyde solution for 2 hours. Mechanical test showed that tensile strength of the crosslinked three‐layer scaffold in the longitudinal direction was 2.90 MPa which is comparable to that of the vein and artery. The MTT [3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] assay displayed cell viability of above 96% for the PLGA‐gelatin containing 2 wt% graphene. SEM analysis revealed that the addition of graphene to PLGA‐gelatin (up to 2%) causes a remarkable improvement in cell adhesion.  相似文献   

5.
A fully starch‐derived bioactive 3D porous scaffold is developed. The bioactivity is introduced through nanosized graphene oxide (nGO) derived from starch by microwave‐assisted degradation to carbon spheres and further oxidation to GO nanodots. nGO is covalently attached to starch to prepare functionalized starch (SNGO) via an esterification reaction. nGO and SNGO exhibit no cytotoxicity to MG63 at least up to 1000 µg mL−1 under (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay. Porous scaffolds consisting of starch and SNGO (S/SNGO) or nGO (S/nGO) are prepared by freeze drying. The porosity and water uptake ability of the scaffolds depend on the concentration of nGO. Moreover, nGO, as a bioactive nanofiller, functions as an effective anchoring site for inducing CaP recrystallization in simulated body fluid. Among all modified starch‐based scaffolds, the S/SNGO scaffold containing the highest concentration of covalently attached SNGO (50%) induces the largest amount of hydroxyapatite, a type of CaP crystal that is closest to bone. The prepared 3D porous nGO functionalized scaffold, thus, exhibits potential promise for bone/cartilage tissue engineering.

  相似文献   


6.
7.
A series of chroman derivatives were synthesized by employing o‐methyl phenol as a precursor. These compounds were fully characterized using IR, NMR spectroscopic techniques, and elemental analysis. Mechanisms for the formation of the chroman moiety of these compounds were also proposed. MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay was used to estimate their cytotoxicity toward two cancer cell lines: human ovarian cancer (A2780) and human cervical cancer (Hela). © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:423–429, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20621  相似文献   

8.
One new penicillide derivative, prenpenicillide ( 1 ), and one new xanthone derivative, prenxanthone ( 2 ), were isolated from the culture extract of the marine‐derived fungus Penicillium sp. ZLN29, together with six known polyketide compounds, 3 – 8 . Their structures were elucidated on the basis of spectroscopic and spectrometric analyses. The cytotoxicities of these eight compounds were evaluated on four tumor‐cell lines by SRB (=sulforhodamine B) or MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) methods. Compounds 1 and 3 exhibited weak cytotoxicities against HepG2 cell line with IC50 values of 9.9 and 9.7 μM , respectively.  相似文献   

9.
Five new triterpenoid saponins, oleiferosides I–M ( 1 – 5 , resp.) were isolated from the roots of Camellia oleifera Abel . Their structures were elucidated by a combination of 1D‐ and 2D‐NMR spectroscopy, mass spectrometry, and chemical methods. All the compounds were identified as oleanane‐type saponins with sugar moieties linked to C(3) of the aglycone. In addition, cytotoxic activities of these saponins were evaluated against four human tumor cell lines (A549, B16, BEL‐7402, and MCF‐7) by using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) in vitro assay. All of the compounds showed significant cytotoxic activities against the tested cell lines.  相似文献   

10.
A series of novel thiazol‐2‐yl substituted‐1‐sulfonamide derivatives were synthesized from anilines. This involved the coupling of sulfonyl chlorides with thiazol amine to obtain the final compounds 7a – 7j and 8a – 8j . All synthesized compounds were screened for anticancer activity against MCF‐7, HeLa, A‐549, and Du‐145 cancer cell lines by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. Preliminary bioassay suggests that most of the compounds show anti‐proliferation to different degrees, with doxorubicin used as positive control. The synthesized compounds show IC50 values in the range 2.74–8.17 μM in the different cell lines. The compounds 7d , 7e , 8a , 8d , and 8e were active compared to doxorubicin. The compounds having butyl and pantyl chains were more active than their lower and higher carbon chains and also their ring counterparts.  相似文献   

11.
The graphene‐based nanocomposites are considered as great candidates for enhancing electrical and mechanical properties of nonconductive scaffolds in cardiac tissue engineering. In this study, reduced graphene oxide‐silver (rGO‐Ag) nanocomposites (1 and 2 wt%) were synthesized and incorporated into polyurethane (PU) nanofibers via electrospinning technique. Next, the human cardiac progenitor cells (hCPCs) were seed on these scaffolds for in vitro studies. The rGO‐Ag nanocomposites were studied by X‐ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM). After incorporation of rGO‐Ag into PU nanofibers, the related characterizations were carried out including scanning electron microscope (SEM), TEM, water contact angle, and mechanical properties. Furthermore, PU and PU/nanocomposites scaffolds were used for in vitro studies, wherein hCPCs showed good cytocompatibility via 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and considerable attachment on the scaffold using SEM studies. Real‐time polymerase chain reaction (PCR) and immunostaining studies confirmed the upregulation of cardiac specific genes including GATA‐4, T‐box 18 (TBX 18), cardiac troponin T (cTnT), and alpha‐myosin heavy chain (α‐MHC) in the PU/rGO‐Ag scaffolds in comparison with neat PU ones. Therefore, these nanofibrous rGO‐Ag–reinforced PU scaffolds can be considered as suitable candidates in cardiac tissue engineering.  相似文献   

12.
Poly (glycerol sebacate) (PGS) is a thermoset biodegradable elastomer considered as a promising candidate material for nerve applications. However, PGS synthesis is very time and energy consuming. In this study, the PGS pre‐polymer (pPGS) was synthesized using three synthesis times of 3, 5, and 7 hours at 170°C. Fourier transform infrared (FTIR), nuclear magnetic resonance spectroscopy, X‐ray diffraction analysis, and differential scanning calorimetry thermogram were utilized to study the pPGS behavior. Poly (vinyl alcohol) was used as a carrier to fabricate aligned poly (vinyl alcohol)‐poly (glycerol sebacate) (PVA‐PGS) fibers with various ratios (60:40, 50:50, and 40:60) using electrospinning and crosslinked through the thermal crosslinking method. Morphology of the fibers was studied before and after crosslinking using scanning electron microscopy (SEM). FTIR, mechanical properties in the dry and wet state, water contact angle, in vitro degradation, and water uptake behavior of crosslinked scaffolds were also investigated. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, SEM analysis, and 4′, 6‐diamidino‐2‐phenylindole (DAPI) staining were utilized to determine the biocompatibility of scaffolds. The results show the synthesized pPGS in 3 hours at 170°C is the optimized sample in the terms of chemical reaction. All scaffolds have bead‐free and a uniform fiber diameter. The Young's modulus of crosslinked PVA‐PGS (50:50 and 40:60) fibers is shown to be in the expected range for nerve applications. The cell culture studies reveal PVA‐PGS (50:50 and 40:60) fibers could lead to better cell adhesion and proliferation. The results suggest that PVA‐PGS (50:50 and 40:60) is a suitable and promising biodegradable material in the fabrication of scaffolds for nerve regeneration.  相似文献   

13.
This work aims to evaluate the potential of a bioresorbable composite as material for bone regeneration. Surface‐modified calcium carbonate whiskers (CCWs) were prepared by grafting of ethylene glycol (EG) using 1,6‐hexamethylene diisocyanate as coupling agent, followed by ring‐opening polymerization of l ‐lactide initiated by the hydroxyl group of EG. The resulting PLLA‐EG‐g‐CCW was used as filler to reinforce a bioresorbable terpolymer, poly(l ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG). The mechanical properties and thermal stability of the PLTG/PLLA‐EG‐g‐CCW composites were greatly improved. Compared with neat PLTG, a 39.3% increase in tensile strength and 26.7% increase in elongation at break were obtained for the composite with 2 wt% PLLA‐EG‐g‐CCW filler. This was assigned to the reinforcement effect of evenly dispersed PLLA‐EG‐g‐CCW in the polymeric matrix. In fact, entanglement of PLLA grafts at the surface of PLLA‐EG‐g‐CCW with PLTG chains results in a homogeneous distribution of the filler in the matrix. Thus, the composites are simultaneously strengthened and toughened. The cytocompatibility of the materials was evaluated from cell morphology and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay using L929 mouse fibroblast cell line. The results indicate that the composite presents very low cytotoxicity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
《化学:亚洲杂志》2017,12(7):792-803
A new series of primary ammonium monocarboxylate (PAM) salts of a nonsteroidal anti‐inflammatory drug (NSAID), namely, tolfenamic acid ( TA ), and its β‐alanine derivatives were generated. Nearly 67 % of the salts in the series showed gelling abilities with various solvents, including water (biogenic solvent) and methyl salicylate (typically used for topical gel formulations). Gels were characterized by rheology, electron microscopy, and so forth. Structure–property correlations based on single‐crystal and powder XRD data of several gelator and nongelator salts revealed intriguing insights. Studies (in vitro) on an aggressive human breast cancer cell line (MDA‐MB‐231) with the l ‐tyrosine methyl ester salt of TA ( S7 ) revealed that the hydrogelator salt was more effective at killing cancer cells than the mother drug TA (3‐(4,5‐ di methyl thiazol ‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay); displayed better anti‐inflammatory activity compared with that of TA (prostaglandin E2 assay); could be internalized within the cancer cells, as revealed by fluorescence microscopy; and inhibited effectively migration of the cancer cells. Thus, the easily accessible ambidextrous gelator salt S7 can be used for two purposes: as an anti‐inflammatory topical gel and as an anticancer agent.  相似文献   

15.
Indomethacin ( IND ), which is a well‐known nonsteroidal anti‐inflammatory drug (NSAID), was conjugated with various naturally occurring amino acids. Most of these bioconjugates were capable of gelling pure water, a solution of NaCl (0.9 wt %), and phosphate‐buffered saline (pH 7.4), as well as a few organic solvents. The gels were characterized by table‐top and dynamic rheology, and electron microscopy. Variable‐temperature 1H NMR spectroscopy studies on a selected gel were performed to gain insights into the self‐assembly process during gel formation. Both 1D and 2D hydrogen‐bonded networks were observed in the single‐crystal structures of two of the gelators. Plausible biological applications of the hydrogelators were evaluated with the ultimate aim of drug delivery in a self‐delivery fashion. All hydrogelators were stable in phosphate‐buffered saline at pH 7.4 at 37 °C, and biocompatible in mouse macrophage RAW 264.7 cell line (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay). Two of the most biocompatible hydrogelators displayed an anti‐inflammatory response comparable to that of the parent drug IND in prostaglandin E2 assay. Release of the bioconjugates into the bulk solvent interfaced with the corresponding hydrogels indicated their plausible future application in drug delivery.  相似文献   

16.
A new cell‐printed scaffold consisting of poly(ϵ‐caprolactone) (PCL) and cell‐embedded alginate struts is designed. The PCL and alginate struts are stacked in an interdigitated pattern in successive layers to acquire a three‐dimensional (3D) shape. The hybrid scaffold exhibits a two‐phase structure consisting of cell (MC3T3‐E1)‐laden alginate struts able to support biological activity and PCL struts able to provide controllable mechanical support of the cell‐laden alginate struts. The hybrid scaffolds exhibit an impressive increase in tensile modulus and maximum strength compared to pure alginate scaffolds. Laden cells are homogeneously distributed throughout the alginate struts and the entire scaffold, resulting in cell viability of approximately 84%.  相似文献   

17.
A series of primary ammonium monocarboxylate (PAM) salts derived from β‐alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide???amide and PAM synthons on gelation. Single‐crystal X‐ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure–property correlation based on SXRD and powder X‐ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA‐MB‐231, revealed that one of the PAM salts in the series, namely, PAA.B2 , displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging.  相似文献   

18.
A new series of 9‐substituted‐4,10‐dimethylpyrano[2,3‐f]cinnolin‐2‐ones ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m ) were synthesized via intramolecular cyclization of the respective acyl amidrazone derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k , 4l , 4m ), catalyzed by polyphosphoric acid. Compounds ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k , 4l , 4m ) were synthesized through direct interaction of coumarin‐7‐yl hydrazonoyl chloride ( 3 ) with the corresponding cyclic sec‐amines in the presence of triethylamine. The structures of the new compounds were confirmed by elemental analyses, NMR, and MS spectral data. The antitumor activity of compounds 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m was evaluated in vitro on breast cancer cell line (MCF‐7) by a cell viability assay utilizing the tetrazolium dye 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide. Among the compounds tested, compounds 5d , 5f , 5k , and 5h showed potential anti‐MCF‐7 activity and were able to reduce the viability after 72 h to less than 50%.  相似文献   

19.
Cancer is one of the health problems that lead to death in the world, and nanotechnology was shown to have a unique potential to improve the therapeutic efficacy of anticancer agents. The nanosized drug delivery systems (DDSs) have been offered for targeting tumor tissue because of enhanced drug bioavailability and long circulation time. In this context, we reported a facial approach to prepare a novel pH and glutathione‐responsive nanogel. After that, the nanocarriers coupled with highly fluorescent quantum dots were developed. Then methotrexate (MTX) was loaded into and on the surface of nanogels by ionic interaction so that the triggered MTX release ability of the synthesized nanocarriers was verified through the assessment of in vitro drug release at simulated tumor tissue condition. The improved efficiency of the developed nanogels and their targeted performance via conjugation of MTX (as target ligand of folate receptors) were investigated through the various cell cytotoxicity studies such as 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, 4′6‐diamidino‐2‐phenylindole (DAPI) staining, and flow cytometry. The results of various cell cytotoxicity studies concluded that the developed smart nanogels have many promising abilities for the targeted MTX delivery to cancer tissues.  相似文献   

20.
In this paper, a heart‐cutting two‐dimensional high‐performance liquid chromatography coupled with the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one‐dimensional fingerprint, the second‐dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were >0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second‐dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号