首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphilic AB‐type diblock copolymers composed of hydrophobic poly(L ‐lactide) (PLA) segments and hydrophilic poly(glycolic acid lysine) [poly(Glc‐Lys)] segments with amino side‐chain groups self‐associated to form PLA‐based polymeric micelles with amino surfaces in an aqueous solution. The average diameter of the loose core–shell polymeric micelles for poly(Glc‐Lys) [number‐average molecular weight (Mn) = 1240]‐b‐PLA (Mn = 7000) obtained by a dimethyl sulfoxide/water dialysis method was estimated to be about 50 nm in water by dynamic light scattering measurements. The size and shape of the obtained polymeric micelles were further observed with transmission electron microscopy and atomic force microscopy. To investigate the possibility of applying the obtained PLA‐based polymeric micelles as bioabsorbable vehicles for hydrophobic drugs, we tested the entrapment of drugs in poly(Glc‐Lys) (Mn = 1240)‐b‐PLA (Mn = 7000) micelles and their release with doxorubicin as a hydrophobic drug. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1426–1432, 2002  相似文献   

2.
Methylated and pegylated poly(lactide)‐block‐poly(ε‐caprolactone)‐block‐poly(lactide) copolymers, PLA–P(CL‐co‐CLCH3)–PLA and PLA–P(CL‐co‐CLPEG)–PLA, were prepared in three steps: combining the formation of carbanion‐bearing dihydroxylated‐PCL, the coupling of iodomethane or bromoacetylated α‐hydroxyl‐ω‐methoxy‐poly(ethylene glycol) onto the carbanionic PCL, and finally the ring opening polymerization of DL ‐lactide initiated by the preformed grafted diOH‐PCL copolymers. The resulting block copolymers exhibited lower crystallinity, melting temperature, and hydrophobicity with respect to the original PCL. Degradation of the grafted copolymers was investigated in the presence of Pseudomonas cepacia lipase and compared with that of the triblock copolymer precursor. It is shown that the presence of the grafted substituents affected the enzymatic degradation of PCL segments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4196–4205, 2005  相似文献   

3.
A versatile family of cationic methacrylate copolymers containing varying amounts of primary and tertiary amino side groups were synthesized and investigated for in vitro gene transfection. Two different types of methacrylate copolymers, poly(2‐(dimethylamino)ethyl methacrylate)/aminoethyl methacrylate [P(DMAEMA/AEMA)] and poly(2‐(dimethylamino)ethyl methacrylate)/aminohexyl methacrylate [P(DMAEMA/AHMA)], were obtained by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of dimethylaminoethyl methacrylate (DMAEMA) with N‐(tert‐butoxycarbonyl)aminoethyl methacrylate (Boc‐AEMA) or N‐(tert‐butoxycarbonyl)aminohexyl methacrylate (Boc‐AHMA) followed by acid deprotection. Gel permeation chromatography (GPC) measurements revealed that Boc‐protected methacrylate copolymers had Mn in the range of 16.1–23.0 kDa and low polydispersities of 1.12–1.26. The copolymer compositions were well controlled by monomer feed ratios. Dynamic light scattering and agarose gel electrophoresis measurements demonstrated that these PDMAEMA copolymers had better DNA condensation than PDMAEMA homopolymer. The polyplexes of these copolymers revealed low cytotoxicity at an N/P ratio of 3/1. The in vitro transfection in COS‐7 cells in serum free medium demonstrated significantly enhanced (up to 24‐fold) transfection efficiencies of PDMAEMA copolymer polyplexes as compared with PDMAEMA control. In the presence of 10% serum, P(DMAEMA/AEMA) and P(DMAEMA/AHMA) displayed a high transfection activity comparable with or better than 25 kDa PEI. These results suggest that cationic methacrylate copolymers are highly promising for development of safe and efficient nonviral gene transfer agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2869–2877, 2010  相似文献   

4.
Biodegradable, triblock poly(lactide)‐block‐poly(ε‐caprolactone)‐block‐poly(lactide) (PLA‐b‐PCL‐b‐PLA) copolymers and 3‐star‐(PCL‐b‐PLA) block copolymers were synthesized by ring opening polymerization of lactides in the presence of poly(ε‐caprolactone) diol or 3‐star‐poly(ε‐caprolactone) triol as macroinitiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C‐NMR. The formation of block copolymers was confirmed by NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5363–5370, 2008  相似文献   

5.
A well‐defined amphiphilic copolymer of ‐poly(ethylene oxide) (PEO) linked with comb‐shaped [poly(styrene‐co‐2‐hydeoxyethyl methacrylate)‐graft‐poly(ε‐caprolactone)] (PEO‐b‐P(St‐co‐HEMA)‐g‐PCL) was successfully synthesized by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with ring‐opening anionic polymerization and coordination–insertion ring‐opening polymerization (ROP). The α‐methoxy poly(ethylene oxide) (mPEO) with ω,3‐benzylsulfanylthiocarbonylsufanylpropionic acid (BSPA) end group (mPEO‐BSPA) was prepared by the reaction of mPEO with 3‐benzylsulfanylthiocarbonylsufanyl propionic acid chloride (BSPAC), and the reaction efficiency was close to 100%; then the mPEO‐BSPA was used as a macro‐RAFT agent for the copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) using 2,2‐azobisisobutyronitrile as initiator. The molecular weight of copolymer PEO‐b‐P(St‐co‐HEMA) increased with the monomer conversion, but the molecular weight distribution was a little wide. The influence of molecular weight of macro‐RAFT agent on the polymerization procedure was discussed. The ROP of ε‐caprolactone was then completed by initiation of hydroxyl groups of the PEO‐b‐P(St‐co‐HEMA) precursors in the presence of stannous octoate (Sn(Oct)2). Thus, the amphiphilic copolymer of linear PEO linked with comb‐like P(St‐co‐HEMA)‐g‐PCL was obtained. The final and intermediate products were characterized in detail by NMR, GPC, and UV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 467–476, 2006  相似文献   

6.
A set of well‐defined poly(ethylene‐alt‐propylene)‐b‐polylactide (PEP‐PLA) diblock copolymers containing volume fractions of PLA (fPLA) ranging between 0.08 and 0.91 were synthesized by a combination of living anionic polymerization, catalytic hydrogenation, and controlled coordination‐insertion ring‐opening polymerization. The morphological behavior of these relatively low‐molecular‐weight PEP‐PLA diblock copolymers was investigated with a combination of rheology, small‐angle X‐ray scattering, and differential scanning calorimetry. The ordered microstructures observed were lamellae (L), hexagonally packed cylinders (C), spheres (S), and gyroid (G), a bicontinous cubic morphology having Ia3 d space group symmetry. The G morphology existed in only a small region between the L‐C morphologies in close proximity to the order–disorder transition (ODT). Transformations from L to G were observed upon heating in several samples. The efficacy of the reverse G to L transition in one sample was cooling rate dependent. The PEP‐PLA Flory–Huggins interaction parameter as a function of temperature χPEP‐PLA(T) was estimated from TODT's by mean‐field theory and subsequently used in the construction of the experimental PEP‐PLA morphology diagram (χN versus fPLA). The resultant morphology diagram was symmetric there were the well‐defined L‐C morphology boundaries. The low molecular weight of the materials imparted no significant deviation from previously documented diblock systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2364–2376, 2002  相似文献   

7.
Symmetric reduction‐responsive amphiphilic comblike copolymers mid‐disulfide‐functionalized comblike copolymers with alternating copolymer comprised of styrenic unit and N‐(2‐hydroxyethyl) maleimide (HEMI) unit (poly(St‐alt‐HEMI)) backbones and alternating PEG and PCL side chains (S‐CP(PEG‐alt‐PCL)) with poly(St‐alt‐HEMI) backbones and alternating poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) side chains were synthesized and used as nanocarriers for in vitro release of doxorubicin. The target copolymers with predetermined molecular weight and narrow molecular weight distribution (Mw/Mn = 1.15–1.20) were synthesized by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of vinylbenzyl‐terminated PEG and N‐(2‐hydroxyethyl) maleimide mediated by a disulfide‐functionalized RAFT agent S‐CPDB, and followed by ring‐opening polymerization of ε‐caprolactone. When compared with linear block copolymer comprised of poly(ethylene glycol) (PEG) and poly(?‐caprolactone) (PCL) segments (PEG‐b‐PCL) copolymers, comblike copolymers with similar PCL contents usually exhibited decreased crystallization temperature, melting temperature, and degree of crystallinity, indicating the significant influence of copolymer architecture on physicochemical properties. Dynamic light scattering measurements revealed that comblike copolymers were liable to self‐assemble into aggregates involving vesicles and micelles with average diameter in the range of 56–226 nm and particle size distribution ranging between 0.07 and 0.20. In contrast to linear copolymer aggregates, comblike copolymer aggregates with similar compositions were of improved storage stability and enhanced drug‐loading efficiency. In vitro drug release confirmed the disulfide‐linked comblike copolymer aggregates could rapidly release the encapsulated drug when triggered by 10 mM DL ‐dithiothreitol. These reduction‐sensitive, biocompatible, and biodegradable aggregates have a potential as controlled delivery vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

9.
Repeating sequence copolymers of poly(lactic‐co‐caprolactic acid) (PLCA), poly(glycolic‐co‐caprolactic acid) (PGCA), and poly(lactic‐co‐glycolic‐co‐caprolactic acid) (PLGCA) have been synthesized by polymerizing segmers with a known sequence in yields of 50–85% with Mns ranging from 18–49 kDa. The copolymers exhibited well‐resolved NMR resonances indicating that the sequence encoded in the segmers used in their preparation is retained and that transesterification is minimal. The exact sequences allowed for unambiguous assignment of the NMR spectra, and these standards were compared with the data previously reported for random copolymers. The glass transition temperatures (Tgs) of the PLCA and PGCA copolymers were found to depend primarily on monomer ratio rather than sequence. Sequence dependent Tgs were, however, noted for the PLGCA polymers with 1:1:1 L:G:C ratios; poly LGC and poly GLC exhibited Tgs that differed by nearly 8 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
The well‐defined, thermosensitive and biodegradable graft copolymers, poly(N‐isopropylacrylamide)‐b‐[2‐hydroxyethyl methacrylate‐poly(ε‐caprolactone)]n (PNIPAAm‐b‐(HEMA‐PCL)n) (n = 3 or 9), were synthesized by combining reversible addition‐fragmentation chain transfer polymerization and macromonomer method. The copolymers were able to self‐assemble into micelles in water with low critical micellar concentration and demonstrated temperature sensitivity with a lower critical solution temperature at around 36 °C. Transmission electron microscopy shows that the micelles exhibit a nanosized spherical morphology within a size range of 30–100 nm. The PNIPAAm‐b‐(HEMA‐PCL)3 copolymer exhibited biodegradation and low cytotoxicity. The paclitaxel‐loaded PNIPAAm‐b‐(HEMA‐PCL)3 micelles displayed thermosensitive controlled release behavior, which indicates potential as drug carriers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5354–5364, 2007  相似文献   

11.
Two types of multiarm star block copolymers: (polystyrene)m‐poly(divinylbenzene)‐poly(methyl methacrylate)n, (PS)m‐polyDVB‐(PMMA)n and (polystyrene)m‐poly(divinylbenzene)‐poly(tert‐butyl acrylate)k, (PS)m‐polyDVB‐(PtBA)k were successfully prepared via a combination of cross‐linking and Diels–Alder click reactions based on “arm‐first” methodology. For this purpose, multiarm star polymer with anthracene functionality as reactive periphery groups was prepared by a cross‐linking reaction of divinyl benzene using α‐anthracene end functionalized polystyrene (PS‐Anth) as a macroinitiator. Thus, obtained multiarm star polymer was then reacted with furan protected maleimide‐end functionalized polymers: PMMA‐MI or PtBA‐MI at reflux temperature of toluene for 48 h resulting in the corresponding multiarm star block copolymers via Diels–Alder click reaction. The multiarm star and multiarm star block copolymers were characterized by using 1H NMR, SEC, Viscotek triple detection SEC (TD‐SEC) and UV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 178–187, 2009  相似文献   

12.
The synthesis and spectroscopic characterization of a new family of amphiphilic multiblock and triblock copolymers is described. The synthetic methodology rests on the preparation of telechelic multifunctional and difunctional chain transfer agents easily available in two synthetic steps from commercially available polydimethylsiloxane‐containing starting materials. Telechelic polymers thus synthesized are used as macromolecular chain transfer agents in the reversible addition fragmentation chain transfer (RAFT) polymerization of N,N‐dimethylacrylamide (DMA) enabling the synthesis of (AB)n‐type multiblock and ABA‐type triblock copolymers of varying compositions possessing monomodal molecular weight distribution. (AB)n multiblock copolymers [(PDMA‐b‐PDMS)n] were prepared with between 52 and 95 wt % poly(dimethylacrylamide) with number average molecular weights (Mn) between 14,000 and 86,000 (polydispersities of 1.20–2.30). On the other hand, ABA block copolymers with DMA led to amphiphilic block copolymers (PDMA‐b‐PDMS‐b‐PDMA) with Mn values between 9000 and 44,000 (polydispersities of 1.24–1.62). © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7033–7048, 2008  相似文献   

13.
A series of novel rod–coil diblock copolymers on the basis of mesogen‐jacketed liquid‐crystalline polymer were successfully prepared by atom transfer radical polymerization from the flexible polydimethylsiloxane (PDMS) macroinitiator. The hybrid diblock copolymers, poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene}‐block‐polydimethylsiloxane, had number‐average molecular weights (Mn's) ranging from 9500 to 30,900 and relatively narrow polydispersities (≤1.34). The polymerization proceeded with first‐order kinetics. Data from differential scanning calorimetry validated the microphase separation of the diblock copolymers. All block copolymers exhibited thermotropic liquid‐crystalline behavior except for the one with Mn being 9500. Four liquid‐crystalline diblock copolymers with PDMS weight fractions of more than 18% had two distinctive glass‐transition temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1799–1806, 2003  相似文献   

14.
Starch and poly(p‐dioxanone) (PPDO) are the natural and synthetic biodegradable and biocompatible polymers, respectively. Their copolymers can find extensive applications in biomedical materials. However, it is very difficult to synthesize starch‐graft‐PPDO copolymers in common organic solvents with very good solubility. In this article, well‐defined polysaccharides‐graft‐poly(p‐dioxanone) (SAn‐PPDO) copolymers were successfully synthesized via the ring‐opening polymerization of p‐dioxanone (PDO) with an acetylated starch (SA) initiator and a Sn(Oct)2 catalyst in bulk. The copolymers were characterized via Fourier transform infrared spectroscopy, 1H NMR, gel permeation chromatography, thermogravimetric analysis (TG), differential scanning calorimetry, and wide angle x‐ray diffraction. The in vitro degradation results showed that the introduction of SA segments into the backbone chains of the copolymers led to an enhancement of the degradation rate, and the degradation rate of SAn‐PPDO increased with the increase of SA wt %. Microspheres with an average volume diameter of 20 μm, which will have potential applications in controlled release of drugs, were successfully prepared by using these new copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5344–5353, 2009  相似文献   

15.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

16.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

18.
High‐molecular‐weight poly[1‐phenyl‐2‐(4‐t‐butylphenyl)acetylene], poly[1‐phenyl‐2‐(4‐trimethylsilylphenyl) acetylene], and their copolymers were synthesized by the polymerization with TaCl5n‐Bu4Sn. The obtained polymers were sulfonated by using acetyl sulfate to give sulfonated poly(diphenylacetylene)s with different degrees of substitution. The degrees of sulfonation of poly[1‐phenyl‐2‐(4‐t‐butylphenyl)acetylene] and copolymers were in the range of 0.57–0.85. When poly[1‐phenyl‐2‐(4‐trimethylsilylphenyl)acetylene] was sulfonated, the sulfonated poly(diphenylacetylene) with the highest degree of sulfonation was obtained among all the polymers in this study. Its degree of sulfonation was 1.55. All the sulfonated polymers exhibited high CO2 permselectivity, and their CO2/N2 separation factor were over 31. The sulfonated poly(diphenylacetylene) with the highest degree of sulfonation showed the highest CO2/N2 separation factor of 75. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6463–6471, 2009  相似文献   

19.
This article describes the synthesis and characterization of [polystyrene‐b‐poly(2‐vinylpyridine)]n star‐block copolymers with the poly(2‐vinylpyridine) blocks at the periphery. A two‐step living anionic polymerization method was used. Firstly, oligo(styryl)lithium grafted poly(divinylbenzene) cores were used as multifunctional initiators to initiate living anionic polymerization of styrene in benzene at room temperature. Secondly, vinylpyridine was polymerized at the periphery of these living (polystyrene)n stars in tetrahydrofuran at ?78 °C. The resulting copolymers were characterized using size exclusion chromatography, multiangle laser light scattering, 1H NMR, elemental analysis, and intrinsic viscosity measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3949–3955, 2007  相似文献   

20.
Norbornene macromonomers 2 and 3 bearing 10‐ and 20‐mers of lactide were synthesized by ring‐opening polymerization of lactide using 5‐norbornene‐2, 3‐exo‐exo‐dimethanol as an initiator and DBU as a catalyst. Macromonomers 2 and 3 were copolymerized with amino acid derived norbornene monomer 1 , using the Grubbs 2nd generation ruthenium catalyst. The random and block copolymers with Mn's ranging from 28,000 to 180,000 were obtained almost quantitatively where the Mn's of the block copolymers were higher than those of the random ones. Three‐dimensional macroporous structure polymers with average pore size of 10 µm could be found in poly( 1 ) and the block co‐polymer of 1 and 2 or 1 and 3 at the high ratio of 1 . Meanwhile, poly( 2 ) and poly( 3 ) along with block and random copolymers with low ratio of 1 exhibit much larger pores in the range of 50–300 µm. The porosity increased with increase in the unit ratio of 1 . The compressive strength of the porous structure of poly( 2 ) and poly( 3 ) was improved by the copolymerization with 1 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1660–1670  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号