首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
2.
3.
In this study, maximal dissipative second‐order dynamic operators on semi‐infinite time scale are studied in the Hilbert space , that the extensions of a minimal symmetric operator in limit‐point case. We construct a self‐adjoint dilation of the dissipative operator together with its incoming and outgoing spectral representations so that we can determine the scattering function of the dilation as stated in the scheme of Lax‐Phillips. Moreover, we construct a functional model of the dissipative operator and identify its characteristic function in terms of the Weyl‐Titchmarsh function of a self‐adjoint second‐order dynamic operator. Finally, we prove the theorems on completeness of the system of root functions of the dissipative and accumulative dynamic operators.  相似文献   

4.
Maximal dissipative Schrödinger operators are studied in L 2((–,);E) (dimE=n<) that the extensions of a minimal symmetric operator with defect index (n,n) (in limit-circle case at – and limit point-case at ). We construct a selfadjoint dilation of a dissipative operator, carry out spectral analysis of a dilation, use the Lax–Phillips scattering theory, and find the scattering matrix of a dilation. We construct a functional model of the dissipative operator, determine its characteristic function in terms of the Titchmarsh–Weyl function of selfadjoint operator and investigate its analytic properties. Finally, we prove a theorem on completeness of the eigenvectors and associated vectors of a dissipative Schrödinger operators.  相似文献   

5.
6.
7.
In this paper we consider the nonselfadjoint (dissipative) Schrodinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schrodinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schrodinger boundary value problem are given.  相似文献   

8.
In this paper we consider the nonselfadjoint (dissipative) Schrödinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schrödinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schrödinger boundary value problem are given.  相似文献   

9.
10.
In this paper we consider the nonselfadjoint (dissipative) Schr(o)dinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator,and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schr(o)dinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schr(o)dinger boundary value problem are given.  相似文献   

11.
Dissipative singular Sturm–Liouville operators are studied in the Hilbert space Lw2[a,b) (–<a<b), that the extensions of a minimal symmetric operator in Weyls limit-point case. We construct a selfadjoint dilation of the dissipative operator and its incoming and outgoing spectral representations, which makes it possible to determine the scattering matrix of the dilation. We also construct a functional model of the dissipative operator and define its characteristic function in terms of the Titchmarsh–Weyl function of a selfadjoint operator. Finally, in the case when the Titchmarsh–Weyl function of the selfadjoint operator is a meromorphic in complex plane, we prove theorems on completeness of the system of eigenfunctions and associated functions of the dissipative Sturm–Liouville operators. Mathematics Subject Classifications (2000) 47A20, 47A40, 47A45, 34B20, 34B44, 34L10.  相似文献   

12.
In this paper we study direct and inverse problems for discrete and continuous skew‐selfadjoint Dirac systems with rectangular (possibly non‐square) pseudo‐exponential potentials. For such a system the Weyl function is a strictly proper rational matrix function and any strictly proper rational matrix function appears in this way. In fact, extending earlier results, given a strictly proper rational matrix function we present an explicit procedure to recover the corresponding potential using techniques from mathematical system and control theory. We also introduce and study a nonlinear generalized discrete Heisenberg magnet model, extending earlier results for the isotropic case. A large part of the paper is devoted to the related discrete systems of which the pseudo‐exponential potential depends on an additional continuous time parameter. Our technique allows us to obtain explicit solutions for the generalized discrete Heisenberg magnet model and evolution of the Weyl functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号