首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new donor–acceptor (D–A) conjugated copolymer based on benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) was synthesized via a Stille cross‐coupling reaction. A highly conjugated thiophene‐based side group, tris(thienylenevinylene) (TTV), was incorporated into each BDT unit to generate the two‐dimensional D–A copolymer (PBDT‐TTV). An alkoxy‐substituted BDT‐based TPD copolymer (PBDT‐OR) was synthesized using the same polymerization method for comparison. PBDT‐TTV thin films produced two distinct absorption peaks. The shorter wavelength absorption (458 nm) was attributed to the BDT units containing the TTV group, and the longer wavelength band (567–616 nm) was attributed to intramolecular charge transfer between the BDT donor and the TPD acceptor. The highest occupied molecular orbital energy levels of PBDT‐OR and PBDT‐TTV were calculated to be −5.53 and −5.61 eV, respectively. PBDT‐TTV thin films harvested a broad solar spectrum covering the range 300–700 nm. A comparison with the PBDT‐OR films revealed stronger interchain π–π interactions in the PBDT‐TTV films and, thus, a higher hole mobility. A polymer solar cell device prepared using PBDT‐TTV as the active layer was found to exhibit a higher power conversion efficiency than a device prepared using PBDT‐OR under AM 1.5 G (100 mW/cm2) conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 653–660  相似文献   

2.
Three classes of quinoxaline (Qx)‐based donor–acceptor (D–A)‐type copolymers, poly[thiophene‐2,5‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diyl] P(T‐Qx), poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diy} P(BDT‐Qx), and poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5′,8′‐di‐2‐thienyl‐2,3‐bis(4‐octyloxyl)phenyl)‐quinoxaline‐5,5‐diyl} P(BDT‐DTQx), were synthesized via a Stille coupling reaction. The Qx unit was functionalized at the 2‐ and 3‐positions with 4‐(octyloxy)phenyl to provide good solubility and to reduce the steric hindrance. The absorption spectra of the Qx‐containing copolymers could be tuned by incorporating three different electron‐donating moieties. Among these, P(T‐Qx) acted as an electron donor and yielded a high‐performance solar cell by assuming a rigid planar structure, confirmed by differential scanning calorimetry, UV–vis spectrophotometer, and density functional theory study. In contrast, the P(BDT‐Qx)‐based solar cell displayed a lower power conversion efficiency (PCE) with a large torsional angle (34.7°) between the BDT and Qx units. The BDT unit in the P(BDT‐DTQx) backbone acted as a linker and interfered with the formation of charge complexes or quinoidal electronic conformations in a polymer chain. The PCEs of the polymer solar cells based on these copolymers, in combination with [6,6]‐phenyl C70 butyric acid methyl ester (PC71BM), were 3.3% [P(T‐Qx)], 1.9% [P(BDT‐Qx)], and 2.3% [P(BDT‐DTQx)], respectively, under AM 1.5G illumination (100 mW cm?2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Six alternating conjugated copolymers ( PL1 – PL6 ) of benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thiophene, containing electron‐withdrawing oxadiazole (OXD), ester, or alkyl as side chains, were synthesized by Stille coupling reaction. The structures of the polymers were confirmed, and their thermal, optical, electrochemical, and photovoltaic properties were investigated. The introduction of conjugated electron‐withdrawing OXD or formate ester side chain benefits to decrease the bandgaps of the polymers and improve the photovoltaic performance due to the low steric hindrance of BDT. Bulk heterojunction polymer solar cells (PSCs) were fabricated based on the blend of the as‐synthesized polymers and the fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) in a 1:2 weight ratio. The maximum power conversion efficiency of 2.06% was obtained for PL5 ‐based PSC under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Two new side‐chain donor–acceptor (D‐A)‐based triphenylamine‐alt‐benzo[1,2‐b:4,5‐b′]dithiophene (TPA‐alt‐BDT) copolymers ( P1 and P2 ) with pendant benzothiadiazole (BT)/diketopyrrolopyrrole (DPP) in TPA unit were synthesized by Stille coupling polymerization. Their thermal, photophysical, electrochemical, blend film morphology and photovoltaic properties were investigated. Efficient bulk heterojunction polymer solar cells (PSCs) were obtained by solution process using both copolymers as donor materials and PC71BM as acceptor. The maximum power conversion efficiency (PCE) of 3.17% with a highest open‐circuit voltage (Voc) of 0.86V was observed in the P1 ‐based PSCs, while the maximum short‐circuit current (Jsc) of 10.77 mA cm?2 was exhibited in the P2 ‐based PSCs under the illumination of AM 1.5, 100 mW cm?2. The alternating binary donor units and pending acceptor groups played a significant role in tuning photovoltaic properties for this class of the side‐chain D–A‐based copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4103–4110  相似文献   

5.
Thieno[3,2‐b]thiophene‐substituted benzo[1,2‐b:4,5‐b′]dithiophene donor units (TTBDT) serve as novel promising building blocks for donor–acceptor (D‐A) copolymers in organic photovoltaic cells. In this study, a new D‐A type copolymer (PTTBDT‐TPD) consisting of TTBDT and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) is synthesized by Stille coupling polymerization. A PTTBDT‐TPD analog consisting of TTBDT and alkylthienyl‐substituted BDT (PTBDT‐TPD) is also synthesized to compare the optical, electrochemical, morphological, and photovoltaic properties of the polymers. Bulk heterojunction photovoltaic devices are fabricated using the polymers as p‐type donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as the n‐type acceptor. The power conversion efficiencies of the devices fabricated using PTTBDT‐TPD and PTBDT‐TPD are 6.03 and 5.44%, respectively. The difference in efficiency is attributed to the broad UV–visible absorption and high crystallinity of PTTBDT‐TPD. The replacement of the alkylthienyl moiety with thieno[3,2‐b]thiophene on BDT can yield broad UV–visible absorption due to extended π‐conjugation, and enhanced molecular ordering and orientation for organic photovoltaic cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3608–3616  相似文献   

6.
New donor–π–acceptor (D–π–A) type conjugated copolymers, poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(4‐octylthiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐tTz), and poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(6‐octylthieno[3,2‐b]thiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐ttTz) were synthesized and characterized with the aim of investigating their potential applicability to organic photovoltaic active materials. While copolymer PBDT‐tTz showed a zigzagged non‐linear structure by thiophene π‐bridges, PBDT‐ttTz had a linear molecular structure with thieno[3,2‐b]thiophene π‐bridges. The optical, electrochemical, morphological, and photovoltaic properties of PBDT‐tTz and PBDT‐ttTz were systematically investigated. Furthermore, bulk heterojunction photovoltaic devices were fabricated by using the synthesized polymers as p‐type donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester as an n‐type acceptor. PBDT‐ttTz showed a high power conversion efficiency (PCE) of 5.21% as a result of the extended conjugation arising from the thienothiophene π‐bridges and enhanced molecular ordering in the film state, while PBDT‐tTz showed a relatively lower PCE of 2.92% under AM 1.5 G illumination (100 mW/cm2). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1978–1988  相似文献   

7.
Despite the emergence of direct arylation polymerization (DArP) as an alternative method to traditional cross‐coupling routes like Stille polymerization, the exploration of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. DArP polymers tend to have a reputation for being marginally inferior to Stille counterparts due to the increased presence of defects that result from unwanted side reactions in direct arylation, such as unselective C‐H bond activation and homocoupling. We report ten DArP protocols across the three major classes of DArP to generate poly[(2,5‐bis(2‐hexyldecyloxy)phenylene)‐alt‐(4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole)] (PPDTBT). Through evaluation of the method and resulting photophysical and electronic properties, we show not all DArP methods are suitable for generating device‐quality alternating copolymers. When DArP PPDTBT was synthesized in superheated THF with Cs2CO3, neodecanoic acid, and P(o‐anisyl)3, it generated polymers of exceptional quality that performed comparably to Stille counterparts in both roll coated ITO‐free and spin‐coated ITO devices. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2907–2918  相似文献   

8.
Two donor–acceptor conjugated polymers, PTSSO‐TT and PTSSO‐BDT, composed of acenaphtho[1,2‐c]thiophene ‐ S,S‐dioxide (TSSO) as a new electron acceptor and thienothiophene (TT) or benzo[1,2‐b:4,5‐b']dithiophene (BDT) as electron donors, were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PTSSO‐TT and PTSSO‐BDT were found to be 15100 and 26000 Da, with dispersity of 1.8 and 2.4, respectively. The band‐gap energies of PTSSO‐TT and PTSSO‐BDT are 1.56 and 1.59 eV, respectively. The HOMO levels of PTSSO‐TT and PTSSO‐BDT are ?5.4 and ?5.5 eV, respectively. These results indicate that the inclusion of TSSO accepting units into polymers is a very effective method for lowering their HOMO energy levels. The field‐effect mobilities of PTSSO‐TT and PTSSO‐BDT were determined to be 1.5 × 10?3 and 4.5 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PTSSO‐TT as the active layer was found to exhibit a power conversion efficiency (PCE) of 3.79% with an open circuit voltage of 0.71 V under AM 1.5 G (100 mW cm?2) conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 498–506  相似文献   

9.
A new carbazole‐based electron accepting unit, 5‐(2,7‐dibromo‐9H‐carbazol‐9‐yl)benzo[a]phenazine (CBP), was newly designed and synthesized as the acceptor part of donor‐acceptor type low band‐gap polymers for polymer solar cells. The CBP was copolymerized with electron donating monomers such as benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(2‐octyl‐2‐thienyl)‐benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) through Stille cross‐coupling polymerization, and produced two alternating copolymers, PBDT‐CBP and PBDTT‐CBP. An alternating copolymer (PBDT‐CBZ) consisted of 2,7‐dibromo‐9‐(heptadecan‐9‐yl)‐9H‐carbazole (CBZ) and BDT units was also synthesized for comparison. PBDT‐CBZ showed the maximum absorption at 430 nm and did not show absorption at wavelengths longer than 513 nm. However, CBP containing polymers (PBDT‐CBP and PBDTT‐CBP) showed a broad absorption between 300 and 850 nm due to the intramolecular charge transfer interaction between the electron donating and accepting blocks in the polymeric backbone. Bulk heterojunction photovoltaic devices were fabricated using the synthesized polymers as electron donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as electron acceptor. One of these devices showed a power conversion efficiency of 2.33%, with an open‐circuit voltage of 0.81 V, a short‐circuit current of 6.97 mA/cm2, and a fill factor (FF) of 0.41 under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013, 51, 2354–2365  相似文献   

10.
Three donor–acceptor (D–A) 1,3‐di(thien‐2‐yl)thieno [3,4‐c]pyrrole‐4,6‐dione‐based copolymers, poly{9,9‐dioctylfluorene‐2,7‐diyl‐alt‐1,3‐bis(4‐hexylthien‐2‐yl)‐5‐octylthieno[3,4‐c]pyrrole‐4,6‐dione}, poly{N‐(1‐octylnonyl)carbazole‐2,7‐diyl‐alt‐1,3‐bis(4‐hexylthien‐2‐yl)‐5‐octylthieno[3,4‐c]pyrrole‐4,6‐dione}, and poly {4,8‐bis(2‐ethylhexyloxyl) benzo[1,2‐b:3,4‐b′]dithiophene‐alt‐1,3‐bis(4‐hexylthien‐2‐yl)‐5‐octylthieno[3,4‐c] pyrrole‐4,6‐dione} were synthesized by Suzuki or Stille coupling reaction. By changing the donor segment, the bandgaps and energy levels of these copolymers could be finely tuned. Cyclic voltammetric study shows that the highest occupied molecular orbital (HOMO) energy levels of the three copolymers are deep‐lying, which implies that these copolymers have good stability in the air and the relatively low HOMO energy level assures a higher open‐circuit potential when they are used in photovoltaic cells. Bulk‐heterojunction photovoltaic cells were fabricated with these polymers as the donors and PC71BM as the acceptor. The cells based on the three copolymers exhibited power conversion efficiencies of 0.22, 0.74, and 3.11% with large open‐circuit potential of 1.01, 0.99, and 0.90 V under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A series of step‐ladder copolymers based on thiophene–phenylene–thiophene SL1 ‐ SL3 and thiophene–naphthylene–thiophene SL4 repeat units with varying lengths of the oligothiophene segment has been designed and synthesized via a microwave‐assisted Stille‐type cross‐coupling reaction followed by a polymer‐analogous cyclization reaction. The optical properties of the step‐ladder copolymers have been investigated in detail, in particular at low temperature and in the solid‐state. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7342–7353, 2008  相似文献   

12.
Recently, we have used terthiophene side chain to modify benzo[1,2‐b:4,5‐b′]dithiophene (BDT) to form novel building block for BDT polymers. In this paper, this building block is used to copolymerized with thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) and thieno[3,4‐b]thiophene (TT). This building block and TPD‐ or TT‐based polymers (P1 and P3) show high open circuit voltage (VOC) (ca. 0.9–0.95 V) and low energy loss (Eg–eVOC) in solar cells devices compared with similar polymers without bulky side chain. We further introduce thiophene π bridge into these polymers backbone to form two other polymers (P2 and P4). We find this thiophene π bridge does contribute to this bulky side chained benzodithiophene polymer photovoltaic performances, especially for power conversion efficiencies (PCEs). The polymer solar cells (PSCs) performances are moderate in this article due to the serious aggregation in the PSCs active layer. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1615–1622  相似文献   

13.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

14.
Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll‐to‐roll compatible polymer, poly[(2,5‐bis(2‐hexyldecyloxy)phenylene)‐alt‐(4,7‐di(thiophen‐2‐yl)‐benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl‐flanked benzothiadiazole as the acceptor, which is the first β‐unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high‐performance materials. To demonstrate the usefulness of the method, DArP‐prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)‐free and flexible roll‐coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch‐to‐batch variations for high‐quality material.  相似文献   

15.
A series of fluorene–thiophene‐based semiconducting materials, poly(9,9′‐dioctylfluorene‐alt‐α,α′‐bisthieno[3,2‐b]thiophene) (F8TT2), poly(9,9′‐di(3,6‐dioxaheptyl)fluorene‐alt‐thieno[3,2‐b]thiophene) (BDOHF8TT), poly(9,9′‐di(3,6‐dioxaheptyl)fluorene‐alt‐bithiophene) (BDOHF8T2), and poly(9,9′‐dioctylfluorene‐co‐bithiophene‐co‐[4‐(2‐ethylhexyloxyl)phenyl]diphenylamine) (F8T2TPA), was synthesized through a palladium‐catalyzed Suzuki coupling reaction. F8TT2, BDOHF8TT, BDOHF8T2, and F8T2TPA films exhibited photoluminescence maxima at 523, 550, 522, and 559 nm, respectively. Solution‐processed field‐effect transistors (FETs) fabricated with all the copolymers except F8T2TPA showed p‐type organic FET characteristics. Studies of the differential scanning calorimetry scans and FETs of the polymers revealed that more crystalline polymers gave better FET device performance. The greater planarity and rigidity of thieno[3,2‐b]thiophene in comparison with bithiophene resulted in higher crystallinity of the polymer backbone, which led to improved FET performance. On the other hand, the random incorporation of the triphenylamine moiety into F8T2TPA caused the polymer chains to lose crystallinity, resulting in an absence of FET characteristics. With this study, we could assess the liquid‐crystallinity dependence of the field‐effect carrier mobility on organic FETs based on liquid‐crystalline copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4709–4721, 2006  相似文献   

16.
Poly(2‐arylazulene‐alt‐fluorene) and poly(2‐arylazulene‐alt‐thiophene) are synthesized via Suzuki and Stille cross‐coupling polymerization, respectively, using 1,3‐dibromo‐2‐arylazulenes as monomers, which are prepared by a novel directed C?H activation method of 2‐carboxylic azulene and subsequent bromination reaction. Our study shows that functionalization at the 2‐position of azulene monomers influences polymer properties. For instance, different from electron‐withdrawing groups that discourage the protonation of azulene, electron‐donating aryl groups, however, enhances the sensitivity of response to acid. Protonation of the polymers leads to significant shifts in absorption spectra accompanying with obvious color changes from green to brown in majority cases because of the formation of poly(azulenium cation). The electrochromic properties of polymers are examined, exhibiting that nature of aryl group at the 2‐position of azulene influences the stability of their electrochromic devices.  相似文献   

17.
A new heteroarylene‐vinylene donor–acceptor polymer P(BDT‐V‐BTD) with reduced bandgap has been synthesized and its photophysical, electronic and photovoltaic properties investigated both experimentally and theoretically. The structure of the polymer comprises an unprecedented combination of a strong donor (4,8‐dialkoxy‐benzo[1,2‐b:4,5‐b']dithiophene, BDT), a strong acceptor (2,1,3‐benzothiadiazole, BTD) and a vinylene spacer. The new polymer was obtained by a metal‐catalyzed cross‐coupling Stille reaction and fully characterized by NMR, UV–vis absorption, GPC, TGA, DSC and electrochemistry. Detailed ab initio computations with solvation effects have been performed for the monomer and model oligomers. The electrochemical investigation has ascertained the ambipolar character of the polymer and energetic values of HOMO, LUMO and bandgap matching materials‐design rules for optimized organic photovoltaic devices. The HOMO and LUMO energies are consistently lower than those of previous heteroarylene‐vinylene polymer while the introduction of the vinylene spacer afforded lower bandgaps compared to the analogous system P(BDT‐BTD) with no spacer between the aromatic rings. These superior properties should allow for enhanced photovoltages and photocurrents in photovoltaic devices in combination with PCBM. Preliminary photovoltaic investigation afforded relatively modest power conversion efficiencies of 0.74% (AM 1.5G, 100 mW/cm2), albeit higher than that of previous heteroarylene‐vinylene polymers and comparable to that of P(BDT‐BTD). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
An original strategy to construct a new donor–acceptor (D–A)‐integrated structure by directly imposing “pull” unit on the “push” moiety to form fused ring architecture has been developed, and poly{N‐alkyl‐carbazole[3,4‐c:5,6‐c]bis[1,2,5]thiadiazole‐alt‐thiophene} (PCBTT) with D–A‐integrated structure, in which two 1,2,5‐thiadiazole rings are fixed on carbazole in 3‐, 4‐ and 5‐, 6‐position symmetrically and thiophene is used as bridge, has been synthesized. The interaction between pull and push units has fine tuned the HOMO/LUMO energy levels, and the resulting copolymer covers the solar flux from 300 to 750 nm. The interaction between pull and push units is worth noting that due to the fused five rings inducing strong intermolecular interaction, an extremely short π–π stacking distance of 0.32 nm has been achieved for PCBTT both in powder and solid states. This is the shortest π–π stacking distance reported for conjugated polymers. Additionally, an obvious intramolecular charge transfer and energy transfer from donor units to acceptor units have been detected in this D–A integration. A moderate‐to‐high open‐circuit voltage of ~0.7 V in PCBTT:[6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) (w/w = 1/2) solar cells is achieved due to the low‐lying HOMO energy level of PCBTT. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
In this work, we investigate the influence of the amide solvent chemical structure on the properties of poly(3‐hexylthiophene) (P3HT) prepared via direct arylation polymerization (DArP). Our findings indicate that for successful polymerization the amide must possess an acyclic aliphatic structure since cyclization of an amide results in a complete shutdown of DArP reactivity as evidenced by failed polymerization in N‐methylpyrrolidone, whereas the presence of an aromatic motif renders the amide solvent susceptible to C? H activation and leads to incorporation of the solvent structure into the P3HT backbone, as demonstrated on the example of N,N‐diethylbenzamide. Additionally, we observed that the steric bulk of alkyl substituents on both the nitrogen atom and the carbonyl group within the amide structure has to be delicately balanced for optimal DArP reactivity. In the optimal cases, P3HT is obtained in high yield, with high molecular weight and contains a minimal amount of structural defects. The obtained polymer samples were comprehensively studied in terms of their chemical structure, optical, thermal and solid‐state properties in thin films using GPC analysis, 1H NMR, MALDI, UV–vis, GIXRD spectroscopy, and DSC. We additionally note a drastic difference of the amide solvent effect between DArP and Stille polymerization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2494–2500  相似文献   

20.
π‐Conjugated polymers, PBDT‐CNETT and PBDT‐CNECPDT , were prepared by the Stille cross‐coupling polymerization. Optical and thermal properties of the obtained polymers were investigated by UV–vis spectroscopy and thermogravimetric analysis. PBDT‐CNETT and PBDT‐CNECPDT exhibited very narrow band gaps of 1.39 and 1.13 eV, respectively. Highest occupied molecular orbital energy levels estimated by surface analyzer were ?5.17 and ?5.11 eV for PBDT‐CNETT and PBDT‐CNECPDT , respectively. The solar cells based on these polymers were evaluated with the cell configuration of ITO/PEDOT‐PSS/polymer:PC61BH/LiF/Al. The power conversion efficiencies of the solar cells were estimated to be 1.57 and 0.16% for PBDT‐CNETT and PBDT‐CNECPDT , respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号