首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxy resins modified by an organosoluble phosphorus‐containing bismaleimide (3,3′‐bis(maleimidophenyl) ­phenylphosphine oxide; BMPPPO) were prepared by simultaneously curing epoxy/diaminodiphenylmethane (DDM), and BMPPPO. The resulted epoxy resins were found to exhibit glass transition temperatures as high as 212 °C, thermal stability at temperatures over 350 °C, and excellent flame retardancy with Limited oxygen index (LOI) values around 40. Incorporation of BMPPPO into epoxy resins via the thermosetting blend was demonstrated to be an effective way to enhance the thermal properties and flame retardancy simultaneously. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Intumescent flame retardant (IFR) has received the considerable attention ascribed to the inherent advantages including non‐halogen, low toxicity, low smoke release and environmentally friendly. In this work, a novel charring agent poly (piperazine phenylaminophosphamide) named as PPTA was successfully synthesized and characterized by Fourier transform infrared spectra (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then, a series of flame‐retardant EP samples were prepared by blending with ammonium polyphosphate (APP) and PPTA. Combustion tests include oxygen Index (LOI), vertical Burning Test (UL‐94) and cone calorimeter testing,these test results showed that PPTA greatly enhances the flame retardancy of EP/APP. According to detailed results, EP containing 10 wt% APP had a LOI value of 30.2%,but had no enhancement on UL‐94 rating. However, after both 7.5 wt% APP and 2.5 wt% PPTA were added, EP‐7 passed UL‐94 V‐0 rating with a LOI value of 33.0%. Moreover, the peak heat release rate (PHRR) and peak of smoke product rate (PSPR) of EP‐7 were greatly decreased. Meanwhile, the flame‐retardant mechanism of EP‐7 was investigated by scanning electron microscopy (SEM), thermogravimetric analysis/infrared spectrometry (TG‐IR) and X‐ray photoelectron spectroscopy (XPS). The corresponding results presented PPTA significantly increased the density of char layer, resulting in the good flame retardancy.  相似文献   

3.
4.
Graphene‐polyaniline/nickel hydroxide ternary hybrid (RGO‐PANI/Ni(OH)2) was synthesized and incorporated into epoxy resin (EP) to improve the fire retardant property. Thermogravimetric analysis results showed that the RGO‐PANI/Ni(OH)2 nanohybrid could catalyze the thermal degradation of epoxy matrix that was essential to trigger the char formation. The char yield of the RGO‐PANI/Ni(OH)2/EP composite was improved compared with that of the samples with graphene and polyaniline only. With 3.0‐wt% RGO‐PANI/Ni(OH)2, significant reduction in peak heat release rate (40%) and peak smoke production rate (36%) was observed in the cone calorimeter tests. Thermogravimetric analysis/infrared spectrometry (TG‐IR) results indicated that the flammable volatiles of the RGO‐PANI/Ni(OH)2/EP composite was reduced compared with those of the EP and RGO‐PANI/EP. The superior flame retardant and smoke suppressant behaviors of the RGO‐PANI/Ni(OH)2 nanohybrid over RGO‐PANI were attributed to the combination of good barrier effect of graphene with catalytic ability of char formation of PANI and metal hydroxide.  相似文献   

5.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In order to give epoxy resin good flame retardance, a novel bio-based flame retardant based on 2-aminopyrimidine (referred to as VAD) was synthesized from renewable vanillin as one of the starting materials. Its structure was confirmed by NMR and mass spectra. The epoxy resins containing VAD were prepared by utilizing 4,4-diaminodiphenylmethane (DDM) as a co-curing agent, and their flame-retardant, mechanical and thermal properties and corresponding mechanisms were studied. VAD accelerated the cross-linking reaction of DDM and E51 (diglycidyl ether of bisphenol A). 12.5 wt% VAD made the epoxy resin achieve UL-94 V-0 rating and its limited oxygen index (LOI) value increase from 22.4% to 32.3%. The cone calorimetric testing results revealed the decline in the values of total heat release (THR) and peak of heat release rate (pk-HRR) and the obvious enhancement of residue yield. A certain amount of VAD enhanced the flame inhibition, charring and barrier effects, resulting in good flame retardance of the epoxy resin. Furthermore, the tensile strength, flexural strength and flexural modulus of the epoxy resin with 12.5 wt% loading of VAD were 6.5%, 14.9%, 15.2% higher than those of EP, indicating the strengthening effect of VAD. This work guarantees VAD to be a promising flame retardant for enhancing the fire retardancy of epoxy resin without compromising its mechanical properties.  相似文献   

7.
Phosphorus/nitrogen‐containing advanced epoxy resins were obtained by chain‐extension of the diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin with phosphorus‐modified triglycidyl isocyanurate (TGICP). The structure of TGICP was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Differential scanning calorimetry revealed that the EP/TGICP composites possessed higher glass transition temperatures than that of phosphorus free EP. The thermal stability and flame retardant properties of the epoxy resin/TGICP systems were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), and vertical burning test (UL‐94) test. When the TGICP content was 10 wt%, the LOI value of epoxy resin system was as high as 35.0% and it can obtain the V‐0 grade in UL‐94 protocol. From microscale combustion calorimetry (MCC) measurement, it was found that the addition of TGICP reduced the value of peak heat release rate and total heat release. The thermal degradation process of EP and EP/TGICP composite was monitored by real time FTIR. Moreover, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS) were used to explore the morphology and chemical components of the char residues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Epoxy resin (EP)/polyhedral oligomeric silsesquioxane (POSS) hybrids were prepared based on octavinyl polyhedral oligomeric silsesquioxane (OVPOSS) and phosphorus‐containing epoxy resin (PCEP). The PCEP was synthesized via the reaction between bisphenol A epoxy resin (DGEBA) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO). The structure and morphology of PCEP/OVPOSS hybrids were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Differential scanning calorimetry revealed that the PCEP/OVPOSS hybrids possessed higher glass transition temperatures than that of PCEP. The thermal stability of the PCEP/OVPOSS hybrids was studied using thermogravimetric analysis (TGA). The TGA results illustrated the synergistic effect of phosphorus–silicon of flame retardancy: phosphorus promotes the char formation, and silicon protects the char from thermal degradation. The thermal degradation mechanism of the PCEP/OVPOSS hybrids was investigated by real time Fourier transform infrared spectra and pyrolysis/gas chromatogram/mass spectrometry (Py‐GC/MS) analysis. It was found that OVPOSS migrated to the surface of the matrix and then sublimed from the surface in nitrogen; whereas, the vinyl groups of OVPOSS were oxidated to form a radical trap which could react with pyrolysis radicals derived from PCEP to form the branched and crosslinked structure in air. The combustion behaviors of the hybrids were evaluated by micro combustion calorimetry. The addition of OVPOSS obviously decreased the value of peak heat release rate and total heat release of the hybrids. Moreover, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy were used to explore the char residues of the PCEP and the hybrids. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 693–705, 2010  相似文献   

9.
Pentaerythritol diphosphonate melamine-urea-formaldehyde resin salt, a novel cheap macromolecular intumescent flame retardants (IFR), was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus characterized by IR. Epoxy resins (EP) were modified with IFR to get the flame retardant EP, whose flammability and burning behavior were characterized by UL 94 and limiting oxygen index (LOI). 25 mass% of IFR were doped into EP to get 27.2 of LOI and UL 94 V-0. The thermal properties of epoxy resins containing IFR were investigated with thermogravimetry (TG) and differential thermogravimetry (DTG). Activation energy for the decomposition of samples was obtained using Kissinger equation. The resultant data show that for EP containing IFR, compared with EP, IFR decreased mass loss, thermal stability and R max, increased the char yield. The activation energy for the decomposition of EP is 230.4 kJ mol−1 while it becomes 193.8 kJ mol−1 for EP containing IFR, decreased by 36.6 kJ mol−1, which shows that IFR can catalyze decomposition and carbonization of EP.  相似文献   

10.
A triazine ring‐containing charring agent (PEPATA) was synthesized via the reaction between 2,6,7‐trioxa‐l‐phosphabicyclo‐[2.2.2]octane‐4‐methanol (PEPA) and cyanuric chloride. It was applied into intumescent flame retardant epoxy resins (IFR‐EP) as a charring agent. The effect of PEPATA on fire retardancy and thermal degradation behavior of IFR‐EP system was investigated by limited oxygen index (LOI), UL‐94 test, microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TG‐IR). The glass transition temperatures (Tg) of IFR‐EP systems were studied by dynamic mechanical analysis (DMA). The LOI values increased from 21.5 for neat epoxy resins (EPs) to 34.0 for IFR‐EP, demonstrating improved flame retardancy. The TGA curves showed that the amount of residue of IFR‐EP system was largely increased compared to that of neat EP at 700 °C. The new IFR‐EP system could apparently reduce the amount of decomposing products at higher temperatures and promotes the formation of carbonaceous charred layers that slowed down the degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A series of flame retarded epoxy resins (EP) was prepared with a novel polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS). The flame retardancy of these EPs was tested by the LOI, UL-94, which indicates that DOPO-POSS has meaningful effects on the flame retardancy of EP composites. 2.5 wt.% DOPO-POSS incorporation into epoxy resin (EP-2.5), results in a LOI value 30.2 and UL-94 V-1 (t1 = 8 s and t2 = 3 s) rating. Moreover, self-extinguishing effect through the pyrolytic gases spurt is observed in UL-94 test for the EP-2.5. The pyrolytic gases and thermal stability of epoxy resins with and without DOPO-POSS were detected by TGA-FTIR under air atmosphere. Releases of gaseous species are found to be similar for the pure EP and EP-2.5. The details of fire behaviour, such as TTI, HRR, p-HRR, TSR, SEA, COPR, CO2PR, and TML, were tested by cone calorimeter. It is notable that 2.5 wt.% DOPO-POSS could make COPR and CO2PR reach a maximum, which could explain the blowing-out extinguishing effect.  相似文献   

12.
Novel polyphenylene oxide (PPO) microcapsules filled with epoxy resins (PPOMCs) were synthesized by in situ polymerization technology with 2, 6‐dimethy phenol as shell materials and diglycidyl ether of bisphenol A epoxy resins as core materials. The structures and morphologies of PPOMCs were characterized using Fourier‐transform infrared spectroscopy, micro‐confocal Raman microscope, laser scanning confocal microscopy, scanning electron microscopy and optical microscopy, respectively. The thermal properties of PPOMCs were investigated using differential scanning calorimetry and thermogravimetric analysis. The influences of different processing parameters such as the weight ratio of shell material to core material, kind of surfactant and reaction temperature on the morphologies and sizes of PPOMCs were investigated. Preliminary investigation on application of PPOMCs to thermosetting resins 4,4′‐bismaleimidodiphenylmethane/O,O′‐diallylbisphenol A (BMI/BA) system was conducted. Results indicate that PPOMCs can be synthesized successfully. The sizes and surface morphologies of PPOMCs may be significantly affected by different processing parameters. PPOMCs can be well prepared at about 30°C, and they depend strongly on the kind of surfactant and the weight ratio of shell material to core material. PPOMCs basically exhibit high thermal stability when the temperature is below 258°C. The addition of PPOMCs can improve the mechanical properties and maintain the thermal properties of BMI/BA system. The released core materials from PPOMCs may repair the matrix cracks through the polymerization of epoxy resins initiated by curing agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Spinel zinc stannate (Zn2SnO4, ZS) was successfully synthesized by a simple hydrothermal route, and graphene(G) was used as the carrier to form graphene‐zinc stannate (G‐ZS) hybrids. The resulted G‐Zn2SnO4 (G‐ZS) was incorporated to epoxy resin for the purpose of reducing the toxicity hazards during combustion. Toxic gas analyzer results showed that the ZS hybrids possess high efficiency on reducing the generation of NOx, HCN, and CO. Cone calorimeter results of the G‐ZS/EP composites showed about 40% decrease on peak heat release rate compared with pristine EP which meant better fire performance. Also, TG‐IR technology was used to further investigate the gases release during the EP decomposition process. Particularly, the CO release had decreased about 80% than pure EP. This work constructs a new strategy to make a binary metal oxides system which would be efficient in reducing the toxic gases during polymer combustion. Besides, a proper bridge‐effect is proposed to illustrate the proper mechanism.  相似文献   

14.
A novel phosphorus‐containing compound diphenyl‐(1, 2‐dicarboxylethyl)‐phosphine oxide defined as DPDCEPO was synthesized and used as a flame retardant curing agent for epoxy resins (EP). The chemical structure of the prepared DPDCEPO was well characterized by Fourier transform infrared spectroscopy, and 1H, 13C and 31P nuclear magnetic resonance. The DPDCEPO was mixed with curing agent of phthalic anhydride (PA) with various weight ratios into epoxy resins to prepare flame retardant EP thermosets. The flame retardant properties, combustion behavior and thermal analysis of the EP thermosets were respectively investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), cone calorimeter measurement, dynamic mechanical thermal analysis and thermogravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of the char residues for EP thermosets were respectively investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS). The water resistant properties of the cured EP were evaluated by putting the samples into distilled water at 70°C for 168 hr. The results revealed that the EP/20 wt% DPDCEPO/80 wt% PA thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.2%. The cone test results revealed that the incorporation of DPDCEPO effectively reduced the combustion parameters of the epoxy resin thermosets, such as heat release rate and total heat release. The dynamic mechanical thermal analysis test demonstrated that the glass transition temperature (Tg) decreased with the increase of DPDCEPO content. The TGA results indicated that the incorporation of DPDCEPO promoted the decomposition of epoxy resin matrix ahead of time and led to a higher char yield and thermal stability at high temperatures. The surface morphological structures and analysis of the XPS of the char residues of EP thermosets revealed that the introduction of DPDCEPO benefited the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resin material surface during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After water resistance tests, the EP/20 wt% DPDCEPO/80 wt% PA thermosets retained excellent flame retardancy, and the moisture adsorption of the EP thermosets decreased with the increase of DPDCEPO content in EP thermosets because of the existence of the P–C bonds and the rigid aromatic hydrophobic structure in DPDCEPO. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Conferring the flame retardant performance and thermal conductivity simultaneously for epoxy resin (EP) thermosets was significant for fire safety and thermal management applications of electrical and electronic devices. Herein, the graphitic carbon nitride (g‐C3N4) with desired amount was assembled on the surface of ammonium polyphosphate (APP), and the obtained APP/g‐C3N4 (CN‐APP) was characterized and confirmed by X‐ray diffraction, Fourier transform infrared spectroscopy tests, scanning electron microscopy, and transmission electron microscopy. CN‐APP was incorporated into EP and then cured with m‐phenylenediamine. The thermal conductive value of EP/CN‐APP thermosets achieved 1.09 W·mK?1, and the samples achieved UL‐94 V‐0 grade during vertical burning tests with the limiting oxygen index of 30.1% when 7 wt% CN‐APP with the mass fraction of APP/g‐C3N4 of 9/1 was incorporated. For comparative investigation, equal amount of individual g‐C3N4 was introduced into EP thermosets, and the thermal conductivity was only 0.4 W·mK?1. Compared with pure EP, the addition of CN‐APP enhanced the glass transition temperature of EP/CN‐APP thermosets and promoted the generation of more expanded, coherent, and compact char layer during combustion. Consequently, the heat release and smoke production of EP/CN‐APP thermosets were greatly suppressed and led to the improvement of fire safety of materials. It was an alternative and promising approach for preparing high‐performance polymeric materials especially used in integrated electronic devices.  相似文献   

16.
A series of intumescent flame-retardant epoxy resins (IFR-EPs) were prepared only by adding a 5 wt% total loading of ammonium polyphosphate (APP) and metal compounds. All the samples could achieve V-0 rating and did not generate dripping during UL-94 testing. The limiting oxygen index (LOI) values of the samples with 4.83 wt% APP and 0.17 wt% CoSA increase from 27.1 to 29.4, compared with epoxy resin containing 5 wt% APP. The samples also showed excellent water resistance of flame retardancy in 30 °C and 70 °C water for 168 h. The LOI results show that the composition of metal compounds (metal ions and ligands/anions) and the mass ratios of APP to metal compounds affect the flame retardancy of the samples. TG results indicate that the catalytic effect of CoSA on the decomposition of both APP and the epoxy resins containing APP is better than that of CuSAO. The fire behavior of epoxy resin and epoxy resins containing APP with/without CoSA were investigated by cone calorimeter. Cone calorimeter parameters of the samples such as HRR, THR, TSP and COP indicate that the addition of APP and CoSA improves the fire safety of epoxy resin significantly, and CoSA shows an obvious catalytic effect.  相似文献   

17.
The flame‐retarded epoxy resin with improved thermal properties based on environmentally friendly flame retardants is vital for industrial application. Hereby, a novel reactive‐type halogen‐free flame retardant, 10‐(3‐(4‐hydroxy phenyl)‐3,4‐dihydro‐2H‐benzo[e] [1,3] oxazin‐4‐yl)‐5H‐phenophosphazinine 10‐oxide (DHA‐B) was synthesized via a two‐step reaction route. Its structure was characterized using 1H, 13C, and 31P NMR and HRMS spectra. For 4,4′‐diaminodipheny ethane (DDM) and diglycidyl ether of bisphenol A (DGEBA)‐cured systems, the epoxy resin with only 2 wt% loading of DHA‐B passed V‐0 rating of UL‐94 test. Significantly, its glass transition temperature (Tg) and initial decomposition temperature (T5%) were as high as 169.6°C and 359.6°C, respectively, which were even higher than those of the corresponding original epoxy resin. Besides, DHA‐B decreased the combustion intensity during combustion. The analysis of residues after combustion suggested that DHA‐B played an important role in the condensed phase.  相似文献   

18.
A novel mono‐component intumescent flame retardant named pentaerythritol phosphate melamine salt (PPMS)‐hybrid bismuth oxide (PPMS‐Bi2O3) was synthesized and carefully characterized by FTIR, 1H NMR, 31P NMR, SEM‐EDS, and TG analyses. Then, PPMS‐Bi2O3 was utilized as flame retardant for epoxy resins (EPs), and the thermal stability, flame retardancy, and smoke suppression properties of EP composites were investigated. TG results show that PPMS‐Bi2O3 is more conducive to enhance the thermal stability and char forming ability of EP composites compared with the same addition of PPMS or the mixture of PPMS and Bi2O3, and this positive effect is enhanced with the increasing Bi2O3 content. Cone calorimeter test reveals that the PPMS‐Bi2O3 can effectively reduce the heat release and smoke production in comparison with PPMS or the mixture of PPMS and Bi2O3 due to the formation of a more compact and intumescent char against fire, as judged by digital photographs and SEM images. EDS analysis indicates that the combination PPMS and Bi2O3 by hydrogen bonds promotes to generate more phosphorus‐rich and aromatization structures in the condensed phase that enhance the barrier effect and anti‐oxidation ability of the char, thus imparting higher flame retardant and smoke suppression efficiencies to EP composites.  相似文献   

19.
In this work, a DOPO‐based imidazolone derivative named DHI was synthesized using DOPO, 5‐amino‐2‐benzimidazolinone and 4‐hydroxybenzaldehyde as raw materials. The chemical structure of DHI was characterized by 1H‐NMR, 31P‐NMR and Fourier transform infrared spectra (FTIR). Then, a series of different flame‐retardant epoxy resin (EP) thermosets were prepared by mixing flame retardant DHI. The thermal properties of the cured EPs was investigated by thermogravimetry analysis (TGA) and differential scanning calorimeter (DSC), and the results showed the thermal stability and glass transition temperature (Tg) of the cured EP modified with DHI declined slightly compared with that of neat EP. The limited oxygen index (LOI) and UL94 test results exhibited DHI imparted good flame retardancy to EP. The EP‐4 (phosphorus content of 1.25%) possessed a LOI value of 36.5% and achieved a V‐0 rating. Furthermore, the peak of heat release rate (PHRR) and total heat release rate (THR) of EP‐4 decreased by 38.7% and 24.5%, respectively. Excitedly, the total smoke production (TSP) of EP‐4 sample declined by 62.5%, which meant DHI also made EP obtain excellent smoke suppression property. Moreover, the flame‐retardant mechanism was studied by scanning electron microscopy (SEM) and pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS). It was reasonable inferred that DHI could not only promote EP to form dense char layer in condensed phase, but also restrain combustion in gaseous phase through catching the free radicals sourced from the degradation of EP.  相似文献   

20.
Three commercialized flame retardants, 1,2‐bis(diphenylphosphinoyl)ethane (EDPO), 6,6‐(1,2‐phenethyl)bis‐6H‐dibenz[c,e][1,2]oxaphosphorin‐6,6‐dioxide (HTP‐6123), and hexa‐phenoxy‐cyclotriphosphazene (HPCTP), were used to prepare the flame retardant diglycidyl ether of bisphenol A (DGEBA) epoxy resin (EP) under the same experimental conditions. The effects of Tg, thermal stability, and water absorption properties of EP caused by the three flame retardants were investigated and compared, together with their flame retardant efficiency. Results showed that the introduction of the three flame retardants improved the flame retardant performance of EP but led to decreases in Tg and decomposition temperature. EDPO showed higher flame retardant efficiency than the other two flame retardants. EP/EDPO showed higher thermal stability, better flame retardant performance, higher Tg value, and lower water absorption than EP/HTP‐6123 and EP/HPCTP. The study discovered that EDPO and HTP‐6123 primarily act through the gas phase flame retardant mechanism, while HPCTP is primarily driven by the condensed phase mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号