首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3,3‐Disubstituted oxetane monomers were found to undergo rapid, exothermic redox initiated cationic ring‐opening polymerization in the presence of a diaryliodonium or triarylsulfonium salt oxidizing agent and a hydrosilane reducing agent. The redox reaction requires a noble metal complex as a catalyst and several potential catalysts were evaluated. The palladium complex, Cl2(COD)PdII, was observed to provide good shelf life stability while, at the same time, affording high reactivity in the presence of a variety of hydrosilane reducing agents. A range of structurally diverse oxetane monomers undergo polymerization under redox cationic conditions. When a small amount of an alkylated epoxide was added as a “kick‐start” accelerator to these same oxetanes, the redox initiated cationic polymerizations were extraordinarily rapid owing to the marked reduction in the induction period. A mechanistic interpretation of these results is offered. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1854–1861  相似文献   

2.
This paper reports new addition reactions of oxetanes with certain protonic reagents such as carboxylic acid, phenol, and thiol, and with certain aprotic reagents such as acyl chloride, thioester, phosphonyl dichloride, silyl chloride, and chloroformate using quaternary onium salts as catalysts. The kinetic study of the addition reactions of oxetanes was also investigated. These new addition reactions were applicable to the synthesis of new polymers. These polyaddition systems could also construct both polymer main chains and reactive side chains. The alternating copolymerization of oxetanes with carboxylic anhydride was performed. Furthermore, it was found that anionic ring‐opening polymerization of oxetanes containing hydroxy groups proceeded to afford the hyperbranched polymer (HBP) with an oxetanyl group and many hydroxy groups at the ends of the polymer chains. Alkali developable photofunctional HBPs were synthesized by the polyaddition of bis(oxetane)s or tris(oxetane)s, and their patterning properties were examined, too. The photo‐induced cationic polymerization of the polymers with pendant oxetanyl groups and the thermal curing reactions of polyfunctional oxetanes (oxetane resins) were also examined to give the crosslinking materials quantitatively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 709–726, 2007  相似文献   

3.
Simultaneous free radical and cationic photopolymerizations of mixtures of multifunctional acrylate and oxetane monomers were carried out to provide hybrid interpenetrating network polymers. The use of “kick‐started” oxetanes in which oxetane monomers are accelerated by the use of small amounts of certain highly substituted epoxides provides dual independent radical and cationic systems with similar rates of photopolymerization leading to homogeneous interpenetrating networks. The combined photopolymerizations are very rapid and afford crosslinked network films that are colorless, hard, and transparent. The networks display no indications of phase separation. The use of this technology in various applications such as coatings, 3D imaging, and for composites is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 594–601  相似文献   

4.
The ability of certain alkyl substituted epoxides to accelerate the photoinitiated cationic ring‐opening polymerizations of oxetane monomers by substantially reducing or eliminating the induction period altogether has been termed by us “kick‐starting.” In this communication, the rates of photopolymerization of several model “kick‐started” oxetane systems were quantified and compared with the analogous biscycloaliphatic epoxide monomer, 3,4‐epoxycyclohexylmethyl 3′,4′‐epoxycyclohexanecarboxylate (ERL). It has been found that the “kick‐started” systems undergo photopolymerization at rates that are at least two‐fold faster than ERL. These results suggest that “kick‐started” oxetanes could replace ERL in many applications in which high speed ultraviolet induced crosslinking photopolymerizations are carried out. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 586–593  相似文献   

5.
Abstract

Seven novel difunctional oxetane monomers have been prepared and characterized using standard spectroscopic techniques. The photoinitiated cationic polymerization of these seven monomers was carried out and their reactivity compared to a typical diepoxide monomer. In these studies the reactivities of the various oxetane monomers were evaluated and compared by three different techniques: gel time measurements, differential scanning photocalorimetry, and real time infrared spectroscopy. It was observed that the difunctional oxetanes are generally more reactive than their structurally similar epoxide counterparts in photoinitiated cationic polymerization.  相似文献   

6.
A series of epoxy‐functional telechelic oligomers containing oxetane end groups have been synthesized. The precursor monomer, extracted from outer Birch bark, was first polymerized through enzyme‐catalyzed esterification to form oligomers having epoxy and/or oxetane groups in the structures. The oligoesters were subsequently crosslinked through cationic polymerization either by epoxy or oxetane homopolymerization or copolymerization when both functionalities were present. A study of the polymerizations of the resins was performed “in situ” using real‐time Fourier transform infrared spectroscopy revealing a preferred copolymerization when compared with the homopolymerization. By tailoring the different structures, it was possible to control the final mechanical properties of the networks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2258–2266  相似文献   

7.
A series of difunctional silicon‐containing monomers were prepared with a novel method consisting of the monohydrosilation of an α,ω‐difunctional Si? H‐terminated siloxane with a vinyl‐functional epoxide or oxetane followed by the dehydrodimerization of the resulting Si? H‐functional intermediate. This method used simple, readily available starting materials and could be conducted as a streamlined one‐pot, two‐step synthesis. This novel method was also applied to the synthesis of several epoxy–silicone oligomers. The reactivities of these new monomers and oligomers were examined with Fourier transform real‐time infrared spectroscopy and optical pyrometry. Those monomers containing epoxycyclohexyl groups displayed excellent reactivity in cationic ring‐opening polymerization in the presence of lipophilic onium salt photoinitiators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3056–3073, 2003  相似文献   

8.
In the presence of small amounts of 2,2‐dialkyl‐, 2,2,3‐trialkyl‐, or 2,2,3,3‐tetraalkyl substituted epoxides such as isobutylene oxide, 1,2‐limonene oxide, and 2,2,3,3,‐tetramethyl oxirane, the photoinitiated cationic ring‐opening polymerizations of 3,3‐disubstituted oxetanes are dramatically accelerated. The acceleration affect was attributed to an increase in the rate of the initiation step of these latter monomers. Both mono‐ and disubstituted oxetane monomers are similarly accelerated by the above‐mentioned epoxides to give crosslinked network polymers. The potential for the use of such “kick‐started” systems in applications such as coatings, adhesives, printing inks, dental composites and in three‐dimensional imaging is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2934–2946  相似文献   

9.
The anionic ring‐opening polymerization of oxetanes containing hydroxyl groups was carried out with potassium tert‐butoxide as an initiator in the presence of 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding multifunctional hyperbranched polymers: poly(3‐ethyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 2200–4100 in 83–95% yields, and poly(3‐methyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 4600–5200 in 70–95% yields. The synthesized poly(3‐ethyl‐3‐hydroxymethyloxetane)s and poly(3‐methyl‐3‐hydroxymethyloxetane)s were hyperbranched polyethers containing an oxetane moiety and many hydroxy groups at the ends. The postpolymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane)s was performed in the presence of potassium tert‐butoxide and 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding polymers with higher molecular weights in good yields. The cationic polymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane) derivatives was carried out with boron trifluoride etherate as an initiator and was followed by alkaline hydrolysis; this yielded a new branched polymer, a poly(hyperbranched polyether), with many pendant hydroxy groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3739–3750, 2004  相似文献   

10.
Oxetanes offer exciting potential as structural motifs and intermediates in drug discovery and materials science. Here an efficient strategy for the synthesis of oxetane rings incorporating pendant functional groups is described. A wide variety of oxetane 2,2‐dicarboxylates were accessed in high yields, including functionalized 3‐/4‐aryl‐ and alkyl‐substituted oxetanes and fused oxetane bicycles. Enantioenriched alcohols provided enantioenriched oxetanes with complete retention of configuration. The oxetane products were further derivatized, while the ring was maintained intact, thus highlighting their potential as building blocks for medicinal chemistry.  相似文献   

11.
Oxetanes offer exciting potential as structural motifs and intermediates in drug discovery and materials science. Here an efficient strategy for the synthesis of oxetane rings incorporating pendant functional groups is described. A wide variety of oxetane 2,2‐dicarboxylates were accessed in high yields, including functionalized 3‐/4‐aryl‐ and alkyl‐substituted oxetanes and fused oxetane bicycles. Enantioenriched alcohols provided enantioenriched oxetanes with complete retention of configuration. The oxetane products were further derivatized, while the ring was maintained intact, thus highlighting their potential as building blocks for medicinal chemistry.  相似文献   

12.
Studies of the onium salt photoinitiated cationic ring‐opening polymerizations of various 3,3‐disubstituted oxetane monomers have been conducted with real‐time infrared spectroscopy and optical pyrometry. The polymerizations of these monomers are typified by an extended induction period that has been attributed to the presence of a long‐lived tertiary oxonium ion intermediate formed by the reaction of the initially formed secondary oxonium ion with the cyclic ether monomer. Because the extended induction period in the photopolymerization of these monomers renders oxetane monomers of limited value for many applications, methods have been sought for its minimization or elimination. Three general methods have been found effective in markedly shortening the induction period: (1) carrying out the photopolymerizations at higher temperatures, (2) copolymerizing with more reactive epoxide monomers, and (3) using free‐radical photoinitiators as synergists. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3205–3220, 2005  相似文献   

13.
Derivatives of 3‐ethyl‐3‐(hydroxymethyl)oxetane (trimethylolpropane oxetane), potentially useful in cationic UV‐curable formulations, were prepared by the simple acid‐catalyzed addition of alcohols to 1‐alkenyl ethers. Examples include several difunctional oxetane derivatives along with one fluorinated and one acryloylated oxetane derivative. These new materials may find use as reactive diluents or binders in several applications. A preliminary assessment of the curing was made. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 613–619, 2001  相似文献   

14.
The photoinitiated cationic ring‐opening polymerizations of certain epoxides and 3,3‐disubstituted oxetanes display the characteristics of frontal polymerizations. When irradiated with UV light, these monomers display a marked induction period, during which little conversion of the monomer to the polymer takes place. The local application of heat to an irradiated monomer sample results in polymerization that occurs as a front propagating rapidly throughout the entire reaction mass. For the characterization of these frontal polymerizations, the use of a new monitoring technique, employing optical pyrometry, has been instituted. This method provides a simple, rapid means of following these fast polymerizations and quantitatively determining their frontal velocities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1630–1646, 2004  相似文献   

15.
A dual‐cure process consisting of two subsequent ultraviolet‐initiated radical and cationic polymerizations was investigated. The process was studied with two acrylate oxetane monomers, one of them having a spacer between the two polymerizable moieties. It was shown by Fourier transform infrared (FTIR) that the first (radical) step was performed successfully for both systems. As for the second (cationic) step, only the monomer with the spacer was able to polymerize, allowing the crosslinking of the polyacrylic chains generated by the first step. The efficiency of the process was confirmed by differential scanning calorimetry because the glass‐transition temperatures of the cured films were ?16 and + 34 °C after the first and second steps, respectively. The dual cure of this system was further analyzed by real‐time FTIR, which showed that 86% of the acrylate and 80% of the oxetane moieties were converted after 20 and 50 s of light exposure, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 469–475, 2003  相似文献   

16.
Photoinitiated cationic polymerization of oxetane, oxirane (epoxide), and a formulation of both was carried out and their reactivity compared. To investigate a formulated system of oxetane and oxirane in photoinitiated cationic polymerization, computational and experimental methods were used. In the computational study, we employed a semiempirical molecular orbital method (AM1). On the other hand, the reactivities of each system were evaluated and compared experimentally by a real-time FT-IR method. The computational study reveals that oxetane seems to polymerize in SN2 mechanism, but two possibilities, of SN1 mechanism through the α-cleavage and of SN2 mechanism through β-cleavage, are implied for oxirane. Using the real-time FT-IR method, the formulation of oxetane and oxirane was proved to possess rather high reactivities of oxetane toward photoinitiated cationic polymerization. The formulated system exhibited slightly lower number-average molecular weight than oxetane but higher than oxirane. These experimental observations are well explained in terms of the calculated reaction paths. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
In this article, a new route for the synthesis of N‐aryl heteroaromatic onium salts by the direct copper catalyzed arylation of pyridine, substituted pyridines, isoquinoline, and acridine with diaryliodonium salts is described. It was demonstrated that these N‐aryl heteroaromatic onium salts undergo facile platinum or rhodium‐catalyzed reduction by silanes bearing Si? H groups. The reduction of N‐aryl heteroaromatic onium salts generates Brønsted acids. When this redox reaction was carried out in situ in the presence of an appropriate monomer, cationic polymerization was observed. Using this approach, the cationic polymerizations of epoxides, oxetanes, 1,3,5‐trioxane, styrene, and vinyl ethers were carried out. The use of optical pyrometry to monitor the redox initiated cationic polymerizations of some representative multifunctional monomers is described. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Skeletal reorganization is a type of fascinating transformations owing to their intriguing mechanisms and utility in complex molecule synthesis. However, only a limited amount of examples are known for most functional groups. Herein, we describe such an unusual process of oxetanes. In the presence of In(OTf)3 as catalyst, oxetane‐tethered anilines reacted unexpectedly to form 1,2‐dihydroquinolines. This process not only provides expedient access to dihydroquinolines, but also represents a new reaction of oxetane. Mechanistically, it is believed that the reaction proceeds through initial nitrogen attack rather than arene attack followed by a series of bond cleavage and formation events. Control experiments provided important insights into the mechanism.  相似文献   

19.
Limonene 1,2‐oxide (LMO) and α‐pinene oxide (α‐PO) are two high reactivity biorenewable monomers that undergo facile photoinitiated cationic ring‐opening polymerizations using both diaryliodonium salt and triarylsufonium salt photoinitiators. Comparative studies showed that α‐PO is more reactive than LMO, and this is because it undergoes a simultaneous double ring‐opening reaction involving both the epoxide group and the cyclobutane ring. It was also observed that α‐PO also undergoes more undesirable side reactions than LMO. The greatest utility of these two monomers is projected to be as reactive diluents in crosslinking photocopolymerizations with multifunctional epoxide and oxetane monomers. Prototype copolymerization studies with several difunctional monomers showed that LMO and α‐PO were effective in increasing the reaction rates and shortening the induction periods of photopolymerizations of these monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
This study explored the abilities of 1‐(9‐anthrylmethyloxy)‐2‐pyridone and related compounds, which absorb long‐wavelength light (>350 nm), to photochemically initiate radical and cationic polymerizations. It was found that the irradiation of the title compounds initiates the radical polymerization of styrene whereas the cationic polymerization of oxetane proceeds in the presence of these photoinitiators to a negligible extent. The behavior of 9‐anthrylmethyloxyl and amidyl radicals in the photopolymerization process of styrene was discussed based on 1H NMR, UV, and fluorescence spectral data. In addition, the photoinitiation ability of the anthrylmethyloxyl end group was also investigated by using its model compound. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2859–2865, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号