首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study a novel fabrication method for a radio frequency (RF) ion funnel is presented. RF ion funnels are important devices for focusing ion clouds at low vacuum conditions for mass spectrometry or deposition‐related applications. Typically, ion funnels are constructed of stainless steel plate ring electrodes with a decreasing diameter where RF and direct current potentials are applied to the electrodes to focus the ion cloud. The presented novel design is based on a flexible circuit board that serves both as the signal distribution circuit and as the electrodes of the ion funnel. The flexible circuit board is rolled into a 3D printed scaffold to create a funnel shape with ring electrodes formed by the copper electrodes of the flexible circuit board. The design is characterized in direct comparison with a conventional steel‐plate electrode design. The discussed results show that the new funnel has similar performance to the conventionally designed funnel despite much lower manufacturing costs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The first example of an interpenetrated methyl‐modified MOF‐5 with the formula Zn4O(DMBDC)3(DMF)2, where DMBDC2? is 2,5‐dimethylbenzene‐1,4‐dicarboxylate and DMF is N,N‐dimethylformamide (henceforth denoted as Me2MOF‐5‐int ), namely, poly[tris(μ4‐2,5‐dimethylbenzene‐1,4‐dicarboxylato)bis(N,N‐dimethylformamide)‐μ4‐oxido‐tetrazinc(II)], [Zn4(C10H8O4)3O(C3H7NO)2]n, has been obtained from a solvothermal synthesis of 2,5‐dimethylbenzene‐1,4‐dicarboxylic acid and Zn(NO3)2·6H2O in DMF. A systematic study revealed that the choice of solvent is of critical importance for the synthesis of phase‐pure Me2MOF‐5‐int , which was thoroughly characterized by single‐crystal and powder X‐ray diffraction (PXRD), as well as by gas‐adsorption analyses. The Brunauer–Emmett–Teller surface area of Me2MOF‐5‐int (660 m2 g?1), determined by N2 adsorption, is much lower than that of nonpenetrated Me2MOF‐5 (2420 m2 g?1). However, Me2MOF‐5‐int displays an H2 uptake capacity of 1.26 wt% at 77 K and 1.0 bar, which is comparable to that of non‐interpenetrated Me2MOF‐5 (1.51 wt%).  相似文献   

3.
A new nontoxic porous InIII‐based metal‐organic framework [In(Hpbic)(pbic)](DMF)2 ( 1 ) (DMF = N,N‐dimethylacetamide) was successfully prepared with 2‐(pyridin‐4‐yl)‐1H‐benzo[d]imidazole‐5‐carboxylic acid (H2pbic) as organic linker via a solvothermal process. Further, the nanostructure 1 could be obtained via a green grinding method. Nitrogen adsorption measurements revealed the presence of micropores as well as moderate high BET surface areas in the activated nanostructure 1 ( 1a ). The drug loading experiment shows that 5‐fluorouracil (5‐Fu) is preferentially captured into the pore of the nanostructure 1a with a loading capacity of 32.6 %. Meanwhile, the controlled release of 5‐Fu in a simulated human body with liquid phosphate‐buffered saline solution was realized. In addition, the Cell Counting Kit‐8 (CCK‐8) assay was conducted to determine the inhibitory effect of 5‐Fu@ 1a on human colon cancer cell SW60 viability and proliferation, the results indicated the excellent anti‐cancer activity of 5‐Fu@ 1a in vitro. To reveal the related mechanism, the Annexin V‐FITC/PI assay and reactive oxygen species (ROS) level detection was carried out after 5‐Fu@ 1a treatment. Finally, the in vivo xenograft model was constructed in mice, the tumor volume, and mice body weight were recording at indicated time. The in vivo results suggested the significant inhibitory activity of 5‐Fu@ 1a in mice.  相似文献   

4.
《先进技术聚合物》2018,29(8):2327-2335
Bioresorbable stents (BRS) offer the potential to improve long‐term patency rates by providing support just long enough for the artery to heal itself. While manufacturing methods to produce BRS using the appropriate architecture, material and mechanical studies, etc., have received much attention, the effects subsequent sterilization methods have on BRS properties are overlooked. Sterilization process can change a device's properties. This work presents the effects ethanol, ultraviolet light (UV), and antibiotic sterilization processes at 0.5, 1, 2, 4, 8, and 16 hours have on a novel 3D‐printed polycaprolactone stent. The stents were analysed using sterility tests, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, mass spectrometry, for molecular weight, and degradation tests. Results have shown ethanol to be an effective sterilization treatment as it barely affected the material's properties. On the other hand, UV had a considerable influence (mainly produced by the photodegradation of UV irradiation) on crystallinity and molecular weight. Lastly, while antibiotic sterilization did not affect crystallinity to the same degree, it did substantially reduce the molecular weight of the samples. Ethanol results in being the best sterilization method for the high material requirements that medical devices such as stents have.  相似文献   

5.
Additive manufacturing and 3D printing in particular have the potential to revolutionize existing fabrication processes, where objects with complex structures and shapes can be built with multifunctional material systems. For electrochemical energy storage devices such as batteries and supercapacitors, 3D printing methods allows alternative form factors to be conceived based on the end use application need in mind at the design stage. Additively manufactured energy storage devices require active materials and composites that are printable, and this is influenced by performance requirements and the basic electrochemistry. The interplay between electrochemical response, stability, material type, object complexity and end use application are key to realising 3D printing for electrochemical energy storage. Here, we summarise recent advances and highlight the important role of methods, designs and material selection for energy storage devices made by 3D printing, which is general to the majority of methods in use currently.  相似文献   

6.
Over the last decays, the use of conductive biopolymer composites has been growing in areas such as biosensors, soft robotics, and wound dressing applications. They are generally soft hydrophilic materials with good elastic recovery and compatible with biological environments. However, their application and removal from the host are still challenging mainly due to poor mechanical strength. This work displays a technique for the fabrication of complex‐shaped conductive structures with improved mechanical strength by wet three‐dimensional (3‐D) printing, which uses a coagulation bath to quickly solidify an epoxy cross‐linked chitosan/carbon microtube composite ink. The fabricated conductive structure demonstrated higher elongation strength and improved elastic stability upon the introducing of polypropylene glycol diglycidyl ether (PPGDGE) as the epoxy cross‐linker, which can be due to the formation of networks between oxiran groups of PPGDGE and chitosan amino groups.  相似文献   

7.
Porous metal‐organic frameworks (MOFs) loading metal nanoparticles to form a composite photocatalyst demonstrated unique advantages. Modification of the electron donating group on the aromatic linkers of MOFs could increase the absorption range of light, thereby increasing the photocatalytic activity. In this study, we prepared a composite photocatalyst using a stable NH2‐functionalized MOF (UiO‐66‐NH2) to load semiconductor Ag/AgBr nanoparticles, and the resultant composites have intense optical absorption throughout visible light range. The greatly enhanced optical absorption and the unique hetero‐junction between Ag/AgBr and UiO‐66‐NH2 render efficient separation and utilization of photogenerated electron‐hole pairs. Therefore, Ag/AgBr@UiO‐66‐NH2 showed much more excellent photocatalytic activity, compared with unmodified UiO‐66 loading Ag/AgBr (Ag/AgBr@UiO‐66) and reported AgX@MOF catalysts. Moreover, the composite photocatalysts showed excellent stability during cycling experiment.  相似文献   

8.
Identifying significant variations in genomes can be cumbersome, as the variations span a multitude of base pairs and can make genome assembly difficult. However, large DNA molecules that span the variation aid in assembly. Due to the DNA molecule's large size, routine molecular biology techniques can break DNA. Therefore, a method is required to concentrate large DNA. A bis-acrylamide roadblock was cured in a proof-of-principle 3D printed device to concentrate DNA at the interface between the roadblock and solution. Lambda concatemer DNA was stained with YOYO-1 and loaded into the 3D printed device. A dynamic range of voltages and acrylamide concentrations were tested to determine how much DNA was concentrated and recovered. The fluorescence of the original solution and the concentrated solution was measured, the recovery was 37% of the original sample, and the volume decreased by a factor of 3 of the original volume.  相似文献   

9.
Inkjet‐printed high speed polymeric complementary circuits are fabricated using an n‐type ([poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐dithiophene)} [P(NDI2OD‐T2), Polyera ActivInk N2200] and two p‐type polymers [poly(3‐hexylthiophene) (P3HT) and a dithiophene‐based polymer (Polyera ActivInk P2100)]. The top‐gate/bottom‐contact (TG/BC) organic field‐effect transistors (OFETs) exhibit well‐balanced and very‐high hole and electron mobilities (μFET) of 0.2–0.5 cm2/Vs, which were enabled by optimization of the inkjet‐printed active features, small contact resistance both of electron and hole injections, and effective control over gate dielectrics and its orthogonal solvent effect (selection of poly(methyl methacrylate) and 2‐ethoxyethanol). Our first demonstrated inkjet‐printed polymeric complementary devices have been integrated to high‐performance complementary inverters (gain >30) and ring oscillators (oscillation frequency ~50 kHz). We believe that the operating frequency of printable organic circuits can be further improved more than 10 MHz by fine‐tuning of the device architecture and optimization of the p‐ and n‐channel semiconductor processing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
Two supramolecular architectures, [Mn(3‐bpd)2(NCS)2(H2O)2]·2H2O ( 1 ) and {[Mn(bpe)(NCS)2(H2O)2]·(3‐bpd)·(bpe)·H2O}n ( 2 ) [bpe = 1,2‐bis(4‐pyridyl)ethylene and 3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene] have been synthesized and characterized by spectroscopic, elemental and single crystal X‐ray diffraction analyses. Compound 1 crystallizes in the monoclinic system, space group P21/c, with chemical formula C26H28Mn N10O4S2, a = 9.1360(6), b = 9.7490(6), c = 17.776(1) Å, β = 93.212(1)°, and Z = 2 while compound 2 crystallizes in the orthorhombic system, space group P212121, with chemical formula C38H36Mn1N10O3S2, a = 14.1902(6), b = 15.4569(7), c = 18.2838(8) Å, α = β = γ = 90°, and Z = 4. Structural determination reveals that the coordination geometry at Mn(II) in compound 1 or 2 is a distorted octahedral which consists of two nitrogen donors of two NCS?ligands, two oxygen donors of two water molecules, and two nitrogen donors of two 3‐bpd ligands for 1 and two dpe ligands for 2 , respectively. The two 3‐bpd ligands in 1 adopt a monodentate binding mode and the dpe in 2 adopts a bismonodentate bridging mode to connect the Mn(II) ions forming a 1D chain‐like coordination polymer. Both the π‐π stacking interactions between the coordinated and the free pyridyl‐based ligands and intermolecular hydrogen bonds among the coordinated and the crystallized water molecules and the free pyridyl‐based ligands play an important role in construction of these 3D supramolecular architectures.  相似文献   

11.
Eight isomorphous metal‐organic frameworks: [Ln2(TATAB)2(H2O)(DMA)6]·5H2O (Ln = Sm ( 1 ), Eu ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ), Er ( 6 ), Tm ( 7 ), Yb ( 8 )); TATAB = 4,4′,4″‐s‐triazine‐1,3,5‐triyl‐p‐aminobenzoate, DMA = N,N‐dimethylacetamide), were synthesized by the self‐assembly of lanthanide ions, TATAB, DMA and H2O. Single‐crystal X‐ray crystallography reveals they are three dimensional frameworks with 2‐fold interpenetration. Solid‐state photoluminescence studies indicate ligand‐to‐metal energy transfer is more efficient for compounds 2 and 4 which exhibit intense characteristic lanthanide emissions at room temperature.  相似文献   

12.
3D printing technologies permits to produce functional parts with complex geometries, optimized topologies or enhanced internal structures. The relationship between mechanical performance and manufacturing parameters should be exhaustively analyzed to warrant the long term success of printed products. In this work, the mechanical performance of filaments based on acrylonitrile butadiene styrene (ABS), polylactic acid (PLA) and polylactic acid/polyhydroxyalkanoate (PLA/PHA) was investigated and also compared with their corresponding 3D printed samples. In general, the specimen dimensional deviations were found to be within the tolerances defined by the standard testing protocols. Density values revealed a high level of filament fusion promoting a nearly solid internal structure. The filaments exhibited improved tensile performance with respect to their corresponding printed samples. Tensile and bending performance looked quite independent of the raster angle. Izod impact behavior was increased, for ABS systems printed with the ±45° raster orientation. Quasi-static fracture tests displayed improved crack initiation resistance with the 0°/90° raster angle. The crack propagation observed for the ±45° specimens, through the bonding of the inter-layers, suggests weak entanglements.  相似文献   

13.
Three-dimensional (3D) printing is a frontier manufacturing approach with great potential to benefit biomedical and patient care sectors. In the last decades, different types of biomedical materials were investigated in purpose of developing medical tools and devices. The present study attempts to assess mechanical performances (namely: tensile, compression, and flexural) of the newly developed chitosan-reinforced poly-lactic-acid (PLA) scaffolds by using fused filament fabrication (FFF) based 3D printing technology. Specifically, the effects of chitosan loading, infill density and annealing temperature on mechanical behavior of PLA composite scaffolds are investigated via design of experiments. Moreover, fracture behavior under various load types is studied with the help of selective electron microscopy. It is found that the strength of the produced composite samples depends significantly on the loading of chitosan and infill density, while annealing temperature does not affect mechanical response. Overall, the developed PLA composite scaffolds are mechanically efficient and they appear suitable for clinical purposes.  相似文献   

14.
Single crystals of the FeII metal‐organic framework (MOF) with 1,3,5‐benzenetricarboxylate (BTC) as a linker were solvothermally obtained under air‐free conditions. X‐ray diffraction analysis of the crystals demonstrated a structure for FeII‐MOF analogous to that of [Cu3(BTC)2] (HKUST‐1). Unlike HKUST‐1, however, the FeII‐MOF did not retain permanent porosity after exchange of guest molecules. The Mössbauer spectrum of the FeII‐MOF was recorded at 80 K in zero field yielding an apparent quadrupole splitting of ΔEQ = 2.43 mm · s–1, and an isomer shift of δ = 1.20 mm · s–1, consistent with high‐spin central iron(II) atoms. Air exposure of the FeII‐MOF was found to result in oxidation of the metal atoms to afford FeIII. These results demonstrate that FeII‐based MOFs can be prepared in similar fashion to the [Cu3(BTC)2], but that they lack permanent porosity when degassed.  相似文献   

15.
Recent development of the high-resolution Micro-Continuous Liquid Interface Production (μCLIP) process has enabled 3D printing of biomedical devices with micron-scale precision. Despite our recent success in demonstrating fabrication of bioresorbable vascular scaffolds (BVS) via μCLIP, key technical obstacles remain. Specifically, achieving comparable radial stiffness to nitinol stents required strut thickness of 400 μm. Such large struts would negatively affect blood flow through smaller coronary vessels. Low printing speed also made the process impractical for potential on-demand fabrication of patient-specific BVSs. Lack of a systematic optimization strategy capturing the sophisticated process-materials-performance dependencies impedes development of on-demand fabrication of BVSs and other biomedical devices. Herein, we developed a systematic method to optimize the entangled process parameters, such as materials strength/stiffness, exposure dosage, and fabrication speed. A dedicated speed working curve method was developed to calibrate the μCLIP process, which allowed experimental determination of dimensionally-accurate fabrication parameters. Composition of the citric acid-based bioresorbable ink (B-Ink?) was optimized to maximize BVS radial stiffness, allowing scaffold struts at clinically-relevant sizes. Through the described dual optimization, we have successfully fabricated BVSs with radial stiffness comparable to nitinol stents and strut thickness of 150 μm, which is comparable to the ABSORB GT1BVS. Fabrication of 2-cm long BVS with 5 μm, 10 μm, and 15 μm layer slicing can now be accomplished within 26.5, 15.3, and 11.3 min, respectively. The reported process optimization methods and high-speed, high-resolution 3D printing capability demonstrate a promising solution for on-demand fabrication of patient-specific biomedical devices.  相似文献   

16.
3D printed honeycomb structures constituted by neat polylactic acid (PLA) and conductive PLA (PLAc) with different cell sizes and thicknesses were manufactured through 3D printing technology based on material extrusion (MEX). These structures were arranged into bi-layer honeycomb structures (BHS) for evaluation of the microwave absorbing properties at the X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz) frequency ranges. The effects of cell size, sample thickness, layer thickness ratio and the nature of the top layer on the electromagnetic attenuation performance of BHS samples were investigated in terms of reflection loss (RL). The components geometric characteristics and the arrangement of the layers exerted great influence on the RL values and effective absorption bandwidth (EAB). Overall the bilayer structures with 5 mm total thickness presented the best EM response in terms of EAB and minimum RL, where the component with the larger cell size (7.7 mm), PLAc (1 mm) as the top layer and PLA (4 mm) as the bottom layer exhibited the best results with RL values of −41 dB and EAB of 9.5 GHz. The BHS system with 7.7 mm cell size was more efficient in Ku band frequency range, whereas that with 3.5 mm cell size gave better response in the X-band frequency range. Therefore, RL values and EAB can be adjustable by modifying the building strategy of the printed parts, such as thickness of the sample, cell size and thickness distribution of the conductive and non-conductive layers. The findings in this work show the importance of the building strategy to fabricate components with controllable BHS and improved properties for microwave absorption application.  相似文献   

17.
Two MOFs of [SrII(5‐NO2‐BDC)(H2O)6] ( 1 ) and [BaII(5‐NO2‐BDC)(H2O)6] ( 2 ) have been synthesized in water using alkaline earth metal salts and the rigid organic ligand 5‐NO2‐H2BDC. The compounds were characterized by elemental analysis, infrared spectrum, thermal analysis, and X‐ray crystallography. Crystal structure analyses have shown that the two complexes are isostructural as evidenced by IR spectra and TG‐DTA. Both compounds present three‐dimensional frameworks built up from infinite chains of edge‐sharing twelve‐membered rings through O–H···O hydrogen bonds. The specific heat capacities of the title complexes have been determined by an improved RD496‐III microcalorimeter with the values of (109.29 ± 0.693) J mol−1 K−1 and (81.162 ± 0.858) J mol−1 K−1 at 298.15 K, and the molar enthalpy changes of the formation reactions of complexes at 298.15 K were calculated as (4.897 ± 0.008) kJ mol−1 and (2.617 ± 0.009) kJ mol−1, respectively.  相似文献   

18.
Hydrogen adsorption in porous, high surface area, and stable metal organic frameworks (MOF’s) appears a novel route towards hydrogen storage materials [N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Science 300 (2003) 1127; J.L.C. Rowsell, A.R. Millward, K. Sung Park, O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) 5666; G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. (2003) 2976; T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10 (2004) 1373]. A prerequisite for such materials is sufficient adsorption interaction strength for hydrogen adsorbed on the adsorption sites of the material because this facilitates successful operation under moderate temperature and pressure conditions. Here we report detailed information on the geometry of the hydrogen adsorption sites, based on the analysis of inelastic neutron spectroscopy (INS). The adsorption energies for the metal organic framework MOF5 equal about 800 K for part of the different sites, which is significantly higher than for nanoporous carbon materials (550 K) [H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9 (2003) 4764], and is in agreement with what is found in first principles calculations [T. Sagara, J. Klassen, E. Ganz, J. Chem. Phys. 121 (2004) 12543; F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113]. Assignments of the INS spectra is realized using comparison with independently published model calculations [F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113] and structural data [T. Yildirim, M.R. Hartman, Phys. Rev. Lett. 95 (2005) 215504].  相似文献   

19.
To understand structural variation for personal genomics, an extensive ensemble of large DNA molecules will be required to span large structural variations. Nanocoding, a whole‐genome analysis platform, can analyze large DNA molecules for the construction of physical restriction maps of entire genomes. However, handling of large DNA is difficult and a system is needed to concentrate large DNA molecules, while keeping the molecules intact. Insert technology was developed to protect large DNA molecules during routine cell lysis and molecular biology techniques. However, eluting and concentrating DNA molecules has been difficult in the past. Utilizing 3D printed mesofluidic device, a proof of principle system was developed to elute and concentrate lambda DNA molecules at the interface between a solution and a poly‐acrylamide roadblock. The matrix allowed buffer solution to move through the pores in the matrix; however, it slowed down the progression of DNA in the matrix, since the molecules were so large and the pore size was small. Using fluorescence intensity of the insert, 84% of DNA was eluted from the insert and 45% of DNA was recovered in solution from the eluted DNA. DNA recovered was digested with a restriction enzyme to determine that the DNA molecules remained full length during the elution and concentration of DNA.  相似文献   

20.
Four 3D lanthanide organic frameworks from potassium pyrazine‐2, 3, 5, 6‐tetracarboxylate (K4pztc) or potassium pyridine‐2, 3, 5, 6‐tetracarboxylate (K4pdtc), namely, {[KEu(pztc)(H2O)2] · H2O}n ( 1 ), {[KTb(pztc)(H2O)2] · 1.25H2O}n ( 2 ), {[KLn(pdtc)(H2O)] · H2O}n [Ln = Gd ( 3 ), Ho ( 4 )], were synthesized by reaction of the corresponding lanthanide oxides with K4pztc or K4pdtc in presence of HCl under hydrothermal conditions, and characterized by elemental analysis, TGA, IR and fluorescence spectroscopy as well as X‐ray diffraction. In complexes 1 and 2 , the dodecadentate chelator pztc4– links four LnIII ions and four KI ions. The coordination mode of the pztc4– ligand is reported for the first time herein. Complexes 3 and 4 are isostructural with earlier reported Nd, Dy, Er complexes. Moreover, the EuIII and TbIII complexes exhibit the characteristic luminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号