首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and thermodynamic properties of Zr2AlC at high pressure and high temperature are investigated by first principles density functional theory method. The calculated lattice parameters of Zr2AlC are in good agreement with the available theoretical data. The pressure dependences of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Vickers hardness of Zr2AlC are successfully obtained. The elastic anisotropy is examined through the computation of the direction dependence of Young's modulus. By using the quasiharmonic Debye model, the thermodynamic properties including the Debye temperature, heat capacity, volume thermal expansion coefficient, and Grüneisen parameter at high pressure and temperature are predicted for the first time.  相似文献   

2.
The phase transition of TiN from the NaCl structure to the CsCl structure is investigated by the first-principles plane wave pseudopotential density functional theory method, and the thermodynamic properties of the NaCl structures are obtained through the quasi-harmonic Debye model. It is found that the pressures for transition from the NaCl structure to the CsCl structure are 364.1 GPa (for GGA) and 322.2 (for LDA) from equal enthalpies. The calculated ground state properties such as equilibrium lattice constant, bulk modulus, and its pressure derivative are in good agreement with experimental and theoretical data of others. Moreover, the dependences of the relative volume V/V 0 on the pressure P, the Debye temperature ?? D , and heat capacity C V on the pressure P and temperature T, as well as the variation of the thermal expansion ?? with temperature and pressure are also successfully obtained.  相似文献   

3.
The calculations based on the linear combination of atomic orbitals have been performed for the low‐temperature phase of BaTiO3 crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange–correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO3 rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first‐principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The thermodynamic and elastic properties of magnesium silicate (MgSiO3) perovskite at high pressure are investigated with the quasi-harmonic Debye model and the first-principles method based on the density functional theory. The obtained equation of state is consis-tent with the available experimental data. The heat capacity and the thermal expansion coefficient agree with the observed values and other calculations at high pressures and tem-peratures. The elastic constants are calculated using the finite strain method. A complete elastic tensor of MgSiO3 perovskite is determined in the wide pressure range. The geo-logically important quantities: Young's modulus, Poisson's ratio, Debye temperature, and crystal anisotropy, are derived from the calculated data.  相似文献   

5.
First-principles calculations are performed to investigate the structural, elastic, electronic and thermal properties of the cubic perovskite-type BaSnO3. The ground-state properties are in agreement with experimental data. The independent elastic constants, C11, C12 and C44, are calculated from direct computation of stresses generated by small strains. A linear pressure dependence of the elastic stiffnesses is found. From the theoretical elastic constants, we have computed the elastic wave velocities along [100], [110] and [111] directions. The shear modulus, Young's modulus, Poisson's ratio, Lamé’s coefficients, average sound velocity and Debye temperature are estimated in the framework of the Voigt-Reuss-Hill approximation for ideal polycrystalline BaSnO3 aggregate. Using the sX-LDA for the exchange-correlation potential, the calculated indirect fundamental band gap value is in very good agreement with the measured one. The analysis of the site-projected l-decomposed density of states, charge transfer and charge density shows that the bonding is of ionic nature. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature effect on the lattice constant, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature is calculated.  相似文献   

6.
Using a variety theoretical approaches within the Debye, Davidson–Cole, and Forsman models, and an approach based on the Dissado–Hill theory, dielectric spectra of 2,3-butanediol in the temperature range of 298 to 423 K are analyzed. It is shown that the dielectric spectra of 2,3-butanediole are described by the Davidson–Cole equation, and the βDC parameter depends strongly on temperature. The spectrum of dielectric relaxation of 2,3-butanediol within the Debye theory is presented as the sum of two areas of dispersion, and conclusions are drawn regarding possible mechanisms of dispersion responsible for the obtained fields. The relaxation times of 2,3-butanediol, calculated using different equations describing the nonlinear behavior of relaxation times, are compared. The dipole moments of clusters are obtained for the first time using the Dissado–Hill cluster model, and a preliminary analysis of them is performed.  相似文献   

7.
The crystal structure, thermal expansion and heat capacity of PbWO4 (mineral name stolzite) scintillator material were comprehensively studied over a wide temperature range. No phase transitions were found down to 2 K (I41/a, scheelite structure type). A distinct feature of the temperature induced structural variations in PbWO4 are the different thermal elongations of shorter and longer Pb-O distances. The low-temperature thermal expansion of PbWO4 was parameterized on the basis of the 1st order Grüneisen approximation using a Debye function for the internal energy with a Debye temperature of 237 K, a bulk modulus of 67 GPa and a Grüneisen parameter of 1.08. The expansion along the c-axis is about 2.5-3 times higher in the range 23-290 K than along the a-direction. This pronounced anisotropy of the thermal expansion arises from the arrangements of rigid tetrahedral WO42− units along 〈100〉-directions while Pb2+ cations occupy the sites between WO42− in 〈001〉-directions.  相似文献   

8.
We first introduce the latest experimental results, i.e., production of the fine nanostructured and near fully dense transparent Y3Al5O12 (YAG) bulks at high pressure and modest temperature (2.0–5.0 GPa and 300–500 °C). And then, we employ the first-principles plane wave pseudopotential density functional theory method to calculate the equilibrium lattice parameters and the thermodynamic properties of YAG. The obtained lattice parameters are consistent with the experimental data and the available theoretical data of others. Through the quasi-harmonic Debye model, the dependences of the normalized primitive volume V/V 0 on pressure P, the Debye temperature $ \Uptheta_{\rm{D}} $ , and the heat capacity C V on pressure P and temperature T, as well as the variation of the thermal expansion α with temperature and pressure are obtained successfully.  相似文献   

9.
《Solid State Sciences》2012,14(3):401-408
We have predicted structural, electronic, elastic, thermodynamic and vibration characteristics of TbN, using density functional theory within generalized-gradient (GGA) apraximation. For the total energy calculation we have used the projected augmented plane-wave (PAW) implementation of the Vienna Ab initio Simulation Package (VASP). We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), Tetragonal (L10), WC (Bh), NiAs (B8), PbO (B10) and Wurtzite (B4). We have performed the thermodynamics properties for TbN by using quasi-harmonic Debye model. We have, also, predicted the temperature and pressure variation of the volume, bulk modulus, thermal expansion coefficient, heat capacities and Debye temperatures in a wide pressure (0–130 GPa) and temperature ranges (0–2000 K). Furthermore, the band structure, phonon dispersion curves and corresponding density of states are computed. Our results are compared to other theoretical and experimental works, and excellent agreement is obtained.  相似文献   

10.
《Solid State Sciences》2012,14(8):1211-1220
We have performed a first principles study of structural, mechanical, electronic, and optical properties of orthorhombic Sb2S3 and Sb2Se3 compounds using the density functional theory within the local density approximation. The lattice parameters, bulk modulus, and its pressure derivatives of these compounds have been obtained. The second-order elastic constants have been calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities, Debye temperature, and hardness have also been estimated in the present work. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valence electrons and the effective optical dielectric constant are calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data.  相似文献   

11.
Transport properties, temperature‐dependent phonon‐limited electrical and thermal resistivities in the normal state of two‐dimensionally (2D) infinite‐fused zinc porphyrin with a directly mesomeso‐, β‐β‐, and β‐β‐linked array structure ZnP were theoretically calculated using linear‐response approach based on density functional theory (DFT). The calculated transport electron–phonon coupling (EPC) constant using the density functional perturbation theory (DFPT) shows almost equal to the superconducting EPC constant, which is the similar situation within a difference by ca. 10% between them for the transition metals. The calculated electrical and thermal resistivities at 300 K obtained by solving the Boltzmann equation within the lowest‐order variational approximation (LOVA) are only larger by one digit than those of the reference metal Al, expecting to become a fantastic 2D synthetic metal without an injection of conductive carriers from outside, e.g., by doping. The calculated results for the 2D infinite‐fused lithium porphyrin LiP with the same ground state as the one‐electron oxidative state of ZnP were also discussed for comparison. This simple approach using the first applied plane‐wave ultrasoft pseudopotentials (US‐PPs) is a usable technique for the prediction of the transport properties of simple metallic materials within the practical temperature range. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
胡燕飞  孔凡杰  周春 《物理化学学报》2008,24(10):1845-1849
利用第一性原理平面波模守恒赝势密度泛函理论研究了3C-SiC的结构, 其零温(0 K)零压下的晶格常数、体弹模量及其对压强的一阶导数、弹性常数的计算结果与实验值和其它理论计算结果相符合. 通过准谐德拜模型, 得到了不同温度不同压强下的热容和德拜温度, 发现热容随着压强增加而减小, 德拜温度随压强增加而增加, 并成功地获得了相对晶格常数、相对体积、体弹模量、热膨胀系数与温度和压强的关系.  相似文献   

13.
The effects of Debye plasma on the frequency‐dependent polarizabilities of Li and Na atoms are investigated using symplectic algorithm within the framework of the pseudostate summation technique. Dynamic dipole polarizabilities of Li (2s 2S) and Na(3s 2S) as functions of scaled number density of the plasma electrons for arbitrary plasma temperature are presented. Screening effects on the resonance frequencies are also presented. In free‐atomic cases, our calculated results are comparable with the reported theoretical and experimental predictions. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The thermal expansion coefficients of glass fiber–polymer composites were calculated applying the solid cylindrical model taking into account the interaction effects among the glass fibers. The stress and displacement in the composite model were determined as functions of the thermal stress. It was found theoretically that the deviation of the thermal expansion coefficient from the linear mixture relationship based on volume additivity appeared at around Tg + 20 K upon cooling. The thermal expansion coefficient of the composite was also found to be markedly dependent on the dispersion state of the glass fibers. An expression for the difference in the Tg of the matrix resin in the composite from that in the unloaded resin was obtained on the assumption that the volume change of the matrix resin caused by mixing was compensated by free volume expansion. The experimental results obtained by differential scanning calorimetry (DSC) measurements were found to agree well with the theoretically predicted ones.  相似文献   

15.
A series of Eu2+-substituted yellow-green emitting phosphors based on the compound, Sr6M2Al4O15 (M = Y, Lu, Sc) were identified as potential efficient phosphors based on their high calculated Debye temperatures (ΘD > 450 K), which acts as a proxy for photoluminescent quantum yield (PLQY). The crystal structure contains corner-sharing [MO6] octahedra and [AlO4] tetrahedra leading to a highly connected, densely packed crystal structure. However, contrary to prediction, these compounds all showed a low PLQY (<6.5%) at room temperature. Temperature dependent luminescence measurements indicate that the photoluminescence is intense at 80 K but loses ≈90% of the emission intensity by room temperature, with the thermal quenching temperature (T50) occurring well below room temperature. These results suggest that even though Debye temperature (ΘD) is a valid proxy for PLQY, it does not describe thermal quenching.  相似文献   

16.
We report the temperature‐dependent Raman spectra of single‐ and few‐layer MoSe2 and WSe2 in the range 77–700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high‐resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A22u mode is larger than that of the A1g mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single‐layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single‐layer MoSe2 are larger than those of the same modes in single‐layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi‐harmonic approximation, with inputs from first‐principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman‐active mode A1g in MoS2 and MoSe2 arises essentially from the difference in their strain–phonon coupling.  相似文献   

17.
The heat capacity of poly(vinyl methyl ether) (PVME) has been measured using adiabatic calorimetry and temperature‐modulated differential scanning calorimetry (TMDSC). The heat capacity of the solid and liquid states of amorphous PVME is reported from 5 to 360 K. The amorphous PVME has a glass transition at 248 K (?25 °C). Below the glass transition, the low‐temperature, experimental heat capacity of solid PVME is linked to the vibrational molecular motion. It can be approximated by a group vibration spectrum and a skeletal vibration spectrum. The skeletal vibrations were described by a general Tarasov equation with three Debye temperatures Θ1 = 647 K, Θ2 = Θ3 = 70 K, and nine skeletal modes. The calculated and experimental heat capacities agree to better than ±1.8% in the temperature range from 5 to 200 K. The experimental heat capacity of the liquid rubbery state of PVME is represented by Cp(liquid) = 72.36 + 0.136 T in J K?1 mol?1 and compared to estimated results from contributions of the same constituent groups of other polymers using the Advanced Thermal AnalysiS (ATHAS) Data Bank. The calculated solid and liquid heat capacities serve as baselines for the quantitative thermal analysis of amorphous PVME with different thermal histories. Also, knowing Cp of the solid and liquid, the integral thermodynamic functions of enthalpy, entropy, and free enthalpy of glassy and amorphous PVME are calculated with help of estimated parameters for the crystal. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2141–2153, 2005  相似文献   

18.
Nano/micro ceramic‐filled epoxy composite materials have been processed with various percentage additions of SiO2, Al2O3 ceramic fillers as reinforcements selected from the nano and micro origin sources. Different types of filler combinations, viz. only nano, only micro, nano/micro, and micro/micro particles, were designed to investigate their influence on the thermal expansion, thermal conductivity, and dielectric properties of epoxy polymers. Thermal expansion studies were conducted using thermomechanical analysis that revealed a two‐step expansion pattern consecutively before and after vitreous transition temperatures. The presence of micro fillers have shown vitreous transition temperature in the range 70–80°C compared with that of nano structured composites in which the same was observed as ~90°C. Similarly, the bulk thermal conductivity is found to increase with increasing percentage of micron‐size Al2O3. It was established that the addition of micro fillers lead to epoxy composite materials that exhibited lower thermal expansion and higher thermal conductivity compared with nano fillers. Moreover, nano fillers have a significantly decisive role in having low bulk dielectric permittivity. In this study, epoxy composites with a thermal expansion coefficient of 2.5 × 10?5/K, thermal conductivity of 1.18 W/m · K and dielectric permittivity in the range 4–5 at 1 kHz have been obtained. The study confirms that although the micro fillers seem to exhibit good thermal conductivity and low expansion coefficient, the nano‐size ceramic fillers are candidate as cofillers for low dielectric permittivity. However, a suitable proportion of nano/micro‐mixed fillers is necessary for achieving epoxy composites with promising thermal conductivity, controlled coefficient of thermal expansion and dielectric permittivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The experimental values of heat capacity and thermal expansion for lutetium boride LuB66 in the temperature range of 2–300 K were analysed in the Debye–Einstein approximation. It was found that the vibration of the boron sub-lattice can be considered within the Debye model with high characteristic temperatures; low-frequency vibration of weakly connected metal atoms is described by the Einstein model.  相似文献   

20.

The synthetic samples of nickel olivine were measured in the temperature range 100–630 K by the X-ray powder diffraction method. Temperature dependencies of molar volumes and coefficients of bulk thermal expansion of liebenbergite were determined. Interpolation and extrapolation of the experimental data were performed by the procedure based on the Debye–Mie–Gruneisen theory of solid body in the range from 50 to 2000 K, and the Gruneisen coefficient and Debye temperature were calculated. Heat capacity and its behavior in accordance with temperature were evaluated.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号