首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Amphiphilic block copolymers composed of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic poly(glycidyl methacrylate) (PGMA) block were synthesized through cationic ring‐opening polymerization with PEG as the precursor. The model reactions indicated that the reactivity of the epoxy groups was higher than that of the double bonds in the bifunctional monomer glycidyl methacrylate (GMA) under the cationic polymerization conditions. Through the control of the reaction time in the synthesis of block copolymer PEG‐b‐PGMA, a linear GMA block was obtained through the ring‐opening polymerization of epoxy groups, whereas the double bond in GMA remained unreacted. The results showed that the molecular weight of the PEG precursor had little influence on the grafting of GMA, and the PGMA blocks almost kept the same length, despite the difference of the PEG blocks. In addition, the PGMA blocks only consisted of several GMA units. The obtained amphiphilic PEG‐b‐PGMA block copolymers could form polymeric core–shell micelles by direct molecular self‐assembly in water. The crosslinking of the PGMA core of the PEG‐b‐PGMA micelles, induced by ultraviolet radiation and heat instead of crosslinking agents, greatly increased the stability of the micelles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2038–2047, 2005  相似文献   

2.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   

3.
Polystyrene‐block‐poly(2‐vinyl pyridine)‐block‐poly(methyl methacrylate) ABC triblock copolymers were synthesized by sequential living anionic polymerization. Their solution properties were investigated in toluene, which is a bad solvent for the middle block. Spherical micelles are formed, which consist of a poly(2‐vinyl pyridine) dense core bearing polystyrene and poly(methyl methacrylate) soluble chains at the corona. These micelles exhibit the architecture of heteroarm star copolymers obtained by “living” polymerization methods. The aggregation numbers strongly depend on the length of the insoluble P2VP middle block, thus remarkably affecting the size of the micelles.  相似文献   

4.
A series of well‐defined thermoresponsive graft polymers with different lengths and graft densities, poly(glycidyl methacrylate)‐graft‐poly(N‐isopropylacrylate) (PGMA‐g‐PNIPAM), were successfully prepared by combination of controlled/living free radical polymerization and click chemistry. Effects of grafting length and density on the thermoresponsive behavior, aggregating mean diameter, and self‐assembly morphology are systematically investigated. The thermosensitive characteristics of graft polymers in aqueous solution prove that the length and graft density had positive co‐relationship with the lower critical solution temperature value and mean diameter of micelles as well as the size distribution, while the effect of graft length of polymers is more significant than that of density. Transmission electron microscopy analysis shows that the conformations of PGMA45g‐PNIPAM20 and PGMA45g‐PNIPAM46 with longer length and bigger grafting density in aqueous solutions are spherical nanoparticles with the increasing trend of the diameters, while that of PGMA45g‐PNIPAM(73, 50%) shows a spherical‐like morphology, which indicates that the graft length and density have a significant effect on the mean diameter of micelle but not on the self‐assembly morphology. These results reveal that to obtain desired thermoresponsive behavior and self‐assembly morphology of functional polymers, it is essential to design and fabricate the structure of graft polymers with proper length and graft density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2442–2453  相似文献   

5.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

6.
A poly(methyl methacrylate)‐block‐poly(4‐vinylpyridine)‐block‐polystyrene (PMMA‐b‐P4VP‐b‐PS) triblock terpolymer is synthesized by ATRP to study its self‐assembly with PAA in organic solvents. The self‐assembly behavior of this system is compared with the one of a mixture of two diblocks, namely polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) and poly(methyl methacrylate)‐block‐poly(methacrylic acid) (PMMA‐b‐PMAA). For both systems, formation of hydrogen‐bonded complexes between the P4VP and PMAA or PAA blocks occurs. These complexes become insoluble in the solvent used and micelles with a P4VP/P(M)AA complexes core surrounded by PS and PMMA coronal chains are obtained in both cases. These micelles are analyzed by DLS and TEM. Spherical micelles are formed for both systems but the hydrodynamic radii obtained for the two types of micelles are different. Indeed, the micelles formed by the PMMA‐b‐P4VP‐b‐PS + PAA system are smaller than those observed for the PS‐b‐P4VP + PMMA‐b‐PMAA system. Finally, the effect of the molar ratio of the P4VP/PMAA complexing blocks is investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 459–467  相似文献   

7.
Poly(glycidyl methacrylate) (PGMA) was synthesized by the RAFT method in the presence of 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) chain transfer agent using different [GMA]/[CPDB] molar ratios. The living radical polymerization resulted in controlled molecular weights and narrow polydispersity indices (PDI) of ≈1.1. The polymerization of pentafluorostyrene (PFS) with PGMA as the macro‐RAFT agent yielded narrow PDIs of ≤1.2 at 60 °C and ≤1.5 at 80 °C. The epoxy groups of the PGMA block were hydrolyzed to obtain novel amphiphilic copolymer, poly(glyceryl methacrylate)‐block‐poly(pentafluorostyrene) [PGMA(OH)‐b‐PPFS]. The PGMA epoxy group hydrolysis was confirmed by 1H NMR and FTIR spectroscopy. DSC investigation revealed that the PGMA‐b‐PPFS polymer was amorphous while the PGMA(OH)‐b‐PPFS displayed a high degree of crystallinity.

  相似文献   


8.
Thermo‐responsive block‐graft fluoropolymer is synthesized and investigated the self‐assembly morphology and the tunable wettability surface on cotton fabric by dip‐coating into the micelles with different temperatures. Well‐defined block‐graft copolymer is prepared by click chemistry with poly(hexafluorobutyl methacrylate)‐block‐poly(glycidyl methacrylate) (PHFBMA‐b‐PGMA) and homopolymer poly(N‐isopropylacrylate) with alkyne on main chain (Alkynyl‐PNIPAM) to synthesize final block‐graft polymer PHFBMA‐b‐(PGMA‐g‐PNIPAM). The thermo‐responsive behaviors of block‐graft polymer prove that the diameter for fluoropolymer micelle is about 50–70 nm with uniform sphere shape at room temperature and bigger and broader at 40 °C. The surface of cotton fabric processed in micelle solution at room temperature is smooth and has good hydrophobic property, while it has the hydrophilic property dipped in high temperature micelle solution. This work may give valuable guidance for fabricating a facile strategy to establish controllable wettability surfaces on different substrates, which is a promising candidate for the coating materials and industrial fields. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 992–1002  相似文献   

9.
Poly[2‐(3‐nitrocarbazolyl)ethyl methacrylate] (poly(NCzMA)) with controlled molecular weight and narrow molecular weight distribution was successfully synthesized using (methyl methacryloyl)potassium (MMA) as a weak initiator in the presence of diethylzinc (Et2Zn) in THF at –78°C. Et2Zn acted both as an additive for the coordination with enolate anion and nitro group and as a scavenger to remove impurities. Block copolymers PMMA‐block‐poly(NCzMA)‐block‐PMMA and poly(NCzMA)‐block‐PS‐block‐poly(NCz‐MA), were also synthesized quantitatively (PMMA: poly(methyl methacrylate), PS: polystyrene). The results indicate that Et2Zn can be used to synthesize the polymers of solid, nitro group‐containing methacrylate monomers by anionic polymerization in THF.  相似文献   

10.
A series of amphiphilic triblock copolymers, poly[oligo(ethylene glycol) methacrylate]xblock‐poly(ε‐caprolactone)‐block‐poly[oligo(ethylene glycol) methacrylate]x, POEGMACo(x), were synthesized. Formation of hydrophobic domains as cores of the micelles was studied by fluorescence spectroscopy. The critical micelle concentrations in aqueous solution were found to be in the range of circa 10?6 M. A novel methodology by modulated temperature differential scanning calorimetry was developed to determine critical micelle temperature. A significant concentration dependence of cmt was found. Dynamic light scattering measurements showed a bidispersed size distribution. The micelles showed reversible dispersion/aggregation in response to temperature cycles with lower critical solution temperature between 75 and 85 °C. The interplay of the two hydrophobic and one thermoresponsive macromolecular chains offers the chance to more complex morphologies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Well‐defined diblock copolymers, poly(ethylene glycol)‐block‐poly(glycidyl methacrylate)s (PEG‐b‐PGMAs), with different poly(glycidyl methacrylate) (PGMA) chains, were prepared via atom transfer radical polymerization (ATRP) from the same macromolecular initiator 2‐bromoisobutyryl‐terminated poly(ethylene glycol) (PEG). Ethyldiamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and polyethyleneimine (PEI) with an of 400 (PEI400) were used to decorate PEG‐b‐PGMAs to get the cationic polymers PEG‐b‐PGMA‐ oligoamines. These cationic polymers possessed high buffer capability and could condense plasmid DNA (pDNA) into nanoscaled complexes of 125–530 nm. These complexes showed the positive zeta potential of 20–35 mV at N/P ratios of 10–50. Most of them exhibited very low cytotoxicity and good transfection efficiency in 293T cells. The presence of the serum medium did not decrease the transfection efficiency due to the steric stabilization of the PEG chains.

  相似文献   


12.
Summary: A poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymer was synthesized through the polymerization of β‐benzyl‐L ‐aspartate‐N‐carboxyanhydride [Asp(OBzl)‐NCA] with amino‐terminating polylactide (NH2‐PLA) as a macroinitiator. The chain length of the PAsp segment could be easily controlled by changing the monomer/initiator ratio. Dynamic light scattering measurements of PAsp‐block‐PLA aqueous solutions revealed the formation of polymeric micelles. Changes in the micelles as a function of pH were investigated.

The structure and formation of micelles of the poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymers synthesized here.  相似文献   


13.
Polymer nanoporous materials with periodic cylindrical holes were fabricated from microphase‐separated structure of diblock copolymers consisting of a radiation‐crosslinking polymer and a radiation‐degrading polymer through simultaneous crosslinking and degradation by γ‐irradiation. A polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA) diblock copolymer film that self‐assembles into hexagonally packed poly(methyl methacrylate) cylinders in polybutadiene matrix was irradiated with γ‐rays. Solubility test, IR spectroscopy, and TEM and SEM observations for this copolymer film in comparison with a polystyrene‐block‐poly(methyl methacrylate) diblock copolymer film revealed that poly(methyl methacrylate) domains were removed by γ‐irradiation and succeeding solvent washing to form cylindrical holes within polybutadiene matrix, which was rigidified by radiation crosslinking. Thus, it was demonstrated that nanoporous materials can be prepared by γ‐irradiation, maintaining the original structure of PB‐b‐PMMA diblock copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5916–5922, 2007  相似文献   

14.
(AB)f star block copolymers were synthesized by the radical polymerization of a poly(t‐butyl acrylate)‐block‐poly(methyl methacrylate) diblock macroinitiator with ethylene glycol dimethacrylate in methanol under UV irradiation. Diblock macroinitiators were prepared by diethyldithiocarbamate‐mediated sequential living radical copolymerization initiated by (4‐cyano‐4‐diethyldithiocarbamyl)pentanoic acid under UV irradiation. The arm number (f) was controlled by the variation of the initial concentration of the diblock initiator. It was found from light scattering data that such star block copolymers (f ≥ 344) not only took a spherical shape but also formed a single molecule in solution. Subsequently, we derived amphiphilic [arm: poly(acrylic acid)‐block‐poly(methyl methacrylate)] star block copolymers by the hydrolysis of poly(t‐butyl acrylate) blocks. These amphiphilic star block copolymers were soluble in water because the external blocks were composed of hydrophilic poly(acrylic acid) chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3321–3327, 2006  相似文献   

15.
The atom transfer radical polymerization of octadecyl acrylate (ODA) has been investigated and optimized to produce polymers with predetermined molecular weights and narrow polydispersities (<1.2). The poor solubility of the catalytic system formed with conventional ligands such as the N‐(n‐propyl)‐2‐pyridylmethanimine and 2,2′‐bipyridine with Cu(I)Br in nonpolar reaction conditions gave poor control over molecular weight characteristics in ODA polymerizations. The use of N‐(n‐octyl)‐2‐pyridylmethanimine in combination with Cu(I)Br yielded a more soluble catalyst that improved control over the polymerization. The products from the polymerizations were further improved when an initiator, octadecyl 2‐bromo‐2‐methyl‐propanoate, similar in structure to the monomer, was used. Together, these modifications produced polymerizations that showed true controlled character as well as products with predetermined molecular weights and narrow polydispersities. Diblock copolymers of PODA were prepared with methyl methacrylate (MMA) and olig(oethylene glycol) methyl ether methacrylate (OEGMA). The PODA‐block‐POEGMA copolymers are the first examples of all comblike amphiphilic block copolymers. One of PODA‐block‐POEGMA copolymer samples has been shown to self‐assemble as micelles in a dilute aqueous solution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1129–1143, 2005  相似文献   

16.
Metallo‐supramolecular core cross‐linked (CCL) micelles are fabricated from terpyridine‐functionalized double hydrophilic block copolymers, poly(2‐(2‐methoxyethoxy)ethyl methacrylate)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐4′‐(6‐methacryloxyhexyloxy)‐2,2′:6′,2″‐terpyridine) [PMEO2MA‐b‐P(DEA‐co‐TPHMA)] via the formation of bis(terpyridine)ruthenium(II) complexes. These metallo‐supramolecular CCL micelles exhibit not only high structural integrity under different pH values and temperatures in aqueous solution, but multistimuli responsiveness including pH‐responsive cores, thermo‐responsive shells, and reversible dissociation of bis(terpyridine)ruthenium(II) complexes upon addition of competitive metal ion chelator, which allows for precisely controlled release of the encapsulated hydrophobic guest molecules via the combination of different stimuli.

  相似文献   


17.
Summary: Diblock terpolymers that consist of homopolymer and statistical copolymer (polyampholyte) building blocks are synthesized by group transfer polymerization. Two types of block tepolymers are explored in aqueous media: the amphiphilic poly{[(diethylamino)ethyl methacrylate]‐co‐(methacrylic acid)}‐block‐poly(methyl methacrylate) and the double hydrophilic poly[oligo(ethylene glycol) methacrylate]‐block‐poly{[(diethylamino)ethyl methacrylate]‐co‐(methacrylic acid)}. The first terpolymer self‐assembles in aqueous media to form responsive micelles that change their corona charge sign upon switching pH. The second terpolymer exhibits a multi‐responsive behavior. It forms neutral, positive, or negative micelles depending on a combination of different environmental conditions such as temperature, pH, and ionic strength.

P(DEAEMA‐co‐MAA)‐b‐PMMA pH‐sensitive micelles.  相似文献   


18.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The cellulose acetate-grafted-poly(glycidyl methacrylate) copolymers were synthesized successfully by free radical polymerization. The resulting copolymer was characterized by proton nuclear magnetic resonance (1H-NMR), solid-state 13C-NMR, Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The crystallization behavior, thermal properties, specific particle surface area, moisture sorption behavior of the modified cellulose acetate were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) method and Dynamic Vapor Sorption (DVS) instrument. It was found that the poly(glycidyl methacrylate) (PGMA) grafting was effective in improving the water adsorption of cellulose acetate (CA) changing the specific surface area, and reducing the Tg of copolymers.  相似文献   

20.
A poly(methyl methacrylate)‐block‐poly(acrylic acid)‐block‐poly(2‐vinyl pyridine)‐block‐poly(acrylic acid)‐block‐poly(methyl methacrylate) (PMMA‐PAA‐P2VP‐PAA‐PMMA), pentablock terpolymer has been synthesized by anionic polymerization with sequential addition of monomers and studied in aqueous media at low pH. The system exhibits combined properties and adopts the behavior of ‘telechelic’ polyelectrolytes and that of double hydrophilic polyampholytes. This complex behavior leads to the pentablock terpolymer forming a pH and temperature sensitive reversible hydrogel at very low polymer concentration.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号