首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

2.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

3.
Metal–organic frameworks (MOFs) based on multidentate N‐heterocyclic ligands involving imidazole, triazole, tetrazole, benzimidazole, benzotriazole or pyridine present intriguing molecular topologies and have potential applications in ion exchange, magnetism, gas sorption and storage, catalysis, optics and biomedicine. The 2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐benzimidazole (tmb) ligand has four potential N‐atom donors and can act in monodentate, chelating, bridging and tridentate coordination modes in the construction of complexes, and can also act as both a hydrogen‐bond donor and acceptor. In addition, the tmb ligand can adopt different coordination conformations, resulting in complexes with helical structures due to the presence of the flexible methylene spacer. A new three‐dimensional coordination polymer, poly[[bis(μ2‐benzene‐1,4‐dicarboxylato)‐κ4O1,O1′:O4,O4′2O1:O4‐bis{μ2‐2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl‐κN4]‐1H‐benzimidazole‐κN3}dizinc(II)] trihydrate], {[Zn(C8H4O4)(C10H9N5)]·1.5H2O}n, has been synthesized by the reaction of ZnCl2 with tmb and benzene‐1,4‐dicarboxylic acid (H2bdic) under solvothermal conditions. There are two crystallographically distinct bdic2− ligands [bdic2−(A) and bdic2−(B)] in the structure which adopt different coordination modes. The ZnII ions are bridged by tmb ligands, leading to one‐dimensional helical chains with different handedness, and adjacent helices are linked by bdic2−(A) ligands, forming a two‐dimensional network structure. The two‐dimensional layers are further connected by bdic2−(B) ligands, resulting in a three‐dimensional framework with the topological notation 66. The IR spectra and thermogravimetric curves are consistent with the results of the X‐ray crystal structure analysis and the title polymer exhibits good fluorescence in the solid state at room temperature.  相似文献   

4.
A new three‐dimensional interpenetrated CdII–organic framework based on 3,3′‐azodibenzoic acid [3,3′‐(diazenediyl)dibenzoic acid, H2azdc] and the auxiliary flexible ligand 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb), namely poly[[bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′][μ2‐3,3′‐(diazenediyl)dibenzoato‐κ2O:O′]cadmium(II)] monohydrate], {[Cd(C14H8N2O4)(C10H14N2)2]·H2O}n, (1), was obtained by a typical solution reaction in mixed solvents (water and N,N′‐dimethylformamide). Each CdII centre is six‐coordinated by two O atoms of bis‐monodentate bridging carboxylate groups from two azdc2− ligands and by four N atoms from four bimb ligands, forming an octahedral coordination environment. The CdII ions are connected by the bimb ligands, resulting in two‐dimensional (4,4) layers, which are further pillared by the azdc2− ligands, affording a threefold interpenetrated three‐dimensional α‐Po topological framework with the Schläfli symbol 41263. The thermal stability and solid‐state fluorescence properties of (1) have been investigated.  相似文献   

5.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

6.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP) was used to assemble with CdII ions in the presence of the N‐donor flexible bipyridyl ligands 3,3′‐(diazene‐1,2‐diyl)dipyridine (mzpy) and 1,3‐bis(pyridin‐3‐ylmethyl)urea (3bpmu), leading to the formation of two chain coordination polymers by adopting solution methods, namely, catena‐poly[[[triaqua(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐3,3′‐(diazene‐1,2‐diyl)dipyridine‐κ2N1:N1′] dihydrate], {[Cd(C8H2Br3NO4)(C10H8N4)(H2O)3]·2H2O}n or {[Cd(ATBIP)(mzpy)(H2O)3]·2H2O}n, ( 1 ), and catena‐poly[[[tetraaquacadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′‐[diaquabis(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′] octahydrate], {[Cd(C8H2Br3NO4)(C12H12N4O)(H2O)3]·4H2O}n or {[Cd(ATBIP)(3bpmu)(H2O)3]·4H2O}n, ( 2 ). Both complexes were characterized by FT–IR spectroscopic analysis, thermogravimetric analysis (TGA), solid‐state diffuse reflectance UV–Vis spectroscopic analysis, and single‐crystal and powder X‐ray diffraction analysis (PXRD). The mzpy and 3bpmu ligands bridge the CdII metal centres in ( 1 ) and ( 2 ) into one‐dimensional chains, and the ATBIP2− ligands show a monodentate coordination to the CdII centres in both coordination polymers. A discrete water tetramer exists in ( 1 ). Within the chains of ( 1 ) and ( 2 ), there are halogen bonds between adjacent ATBIP2− and mzpy or 3bpmu ligands, as well as hydrogen bonds between the ATBIP2− ligands and the coordinated water molecules. With the aid of weak interactions, the structures of ( 1 ) and ( 2 ) are further extended into three‐dimensional supramolecular networks. An analysis of the solid‐state diffuse reflectance UV–Vis spectra of ( 1 ) and ( 2 ) indicates that a wide indirect band gap exists in both complexes. Complexes ( 1 ) and ( 2 ) exhibit irreversible and reversible dehydration–rehydration behaviours, respectively, and the solid‐state fluorescence properties of both complexes have been studied.  相似文献   

7.
With the rapid development of modern industry, water pollution has become an intractable environmental issue facing humans worldwide. In particular, the organic dyes discharged into natural water from dyestuffs, dyeing and the textile industry are the main sources of pollution in wastewater. To eliminate these types of pollutants, degradation of organic contaminants through a photocatalytic technique is an effective methodology. To exploit more crystalline photocatalysts for the degradation of organic dyes, two coordination polymers, namely catena‐poly[[(3,5‐dicarboxybenzene‐1‐carboxylato‐κO 1)silver(I)]‐μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N ′], [Ag(C9H5O6)(C12H10N2)]n or [Ag(H2BTC)(3,4′‐bpe)]n , (I), and poly[[(μ3‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ4O 1,O 1′:O 3:O 3)[μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N′ ]cadmium(II)] monohydrate], {[Cd(C9H4O6)(C12H10N2)]·H2O}n or {[Cd(HBTC)(3,4′‐bpe)]·H2O}n , (II), have been prepared by the hydrothermal reactions of benzene‐1,3,5‐tricarboxylic acid (H3BTC) and trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene (3,4′‐bpe) in the presence of AgNO3 or Cd(NO3)2·4H2O, respectively. These two title compounds have been structurally characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction. In (I), the AgI ions and organic ligands form a one‐dimensional coordination chain, and adjacent coordination chains are connected by Ag…O interactions to give rise to a two‐dimensional supramolecular network. Each two‐dimensional network is entangled with other equivalent networks to generate an infrequent interlocked 2D→3D (2D and 3D are two‐ and three‐dimensional, respectively) supramolecular framework. In (II), the CdII ions are bridged by the HBTC2− and 3,4′‐bpe ligands, which lie across centres of inversion, to give a two‐dimensional coordination network. The thermal stabilities and photocatalytic properties of the title compounds have also been studied.  相似文献   

8.
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene‐1,4‐dicarboxylic acid (H2BDC) and pyridine (py) with ZnII or CoII yielded two new coordination polymers, namely, poly[(μ4‐benzene‐1,4‐dicarboxylato‐κ4O:O′:O′′:O′′′)(pyridine‐κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena‐poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ3O:O′:O′′)bis(pyridine‐κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the ZnII cation is five‐coordinated by four carboxylate O atoms from four BDC2− ligands and one pyridine N atom in a distorted square‐pyramidal coordination geometry. Four carboxylate groups bridge two ZnII ions to form centrosymmetric paddle‐wheel‐like Zn22‐COO)4 units, which are linked by the benzene rings of the BDC2− ligands to generate a two‐dimensional layered structure. The two‐dimensional layer is extended into a three‐dimensional supramolecular structure with the help of π–π stacking interactions between the aromatic rings. Compound (II) has a one‐dimensional double‐chain structure based on Co22‐COO)2 units. The CoII cations are bridged by BDC2− ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC2− ligands, one water O atom and two pyridine N atoms. Interchain O—H…O hydrogen‐bonding interactions link these chains to form a three‐dimensional supramolecular architecture.  相似文献   

9.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

10.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

11.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

12.
In the development of coordination‐driven crystalline materials, O‐ and N‐atom donors from carboxylate and pyridyl‐based ligands are widely used classes of multidentate bridging ligands composed of several terminal coordinating groups linked by either rigid or flexible spacers. The rigidity of the ligands can play a vital role in the determination of the structures formed. A new CdII supramolecular compound, namely poly[μ‐adipato‐κ2O 1:O4‐μ‐adipato‐κ4O 1,O 1′:O 4,O4′‐diaquabis[μ‐1,4‐bis(pyridin‐4‐yl)‐1,3‐butadiene‐κ2N :N ′]dicadmium(II)], [Cd2(C6H8O4)2(C14H12N2)2(H2O)2]n , (I), has been synthesized by the self‐assembly of Cd(NO3)2·4H2O, adipic acid (hexane‐1,6‐dioic acid; H2adp) and the dipyridyl ligand 1,4‐bis(pyridin‐4‐yl)buta‐1,3‐diene (1,4‐bpbd) under hydrothermal conditions. Single‐crystal X‐ray diffraction analysis reveals that each CdII centre is located in a distorted octahedral coordination environment, coordinated by one water O atom, three carboxylate O atoms from two different adp2− ligands and two N atoms from two different 1,4‐bpbd ligands. The Cd(H2O) units are interconnected by the μ22‐adp2−, μ24‐adp2− and 1,4‐bpbd ligands, which lie across centres of inversion, to give a 66‐ dia network. Large cavities within a single diamondoid network permit the mutual threefold interpenetration of crystallographically equivalent frameworks. Hydrogen‐bonding interactions between the coordinated water molecules and adp2− carboxylate O atoms anchor the interpenetrating networks into a unique three‐dimensional supramolecular structure. Topologically, taking the coordinated water molecules and CdII centres as nodes, the whole architecture can be simplified as a binodal (3,7)‐connected supramolecular framework. The identity of (I) was further characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis and powder X‐ray diffraction. The solid‐state photoluminescence properties of (I) were also investigated.  相似文献   

13.
The N‐heterocyclic ligand 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymer catena‐poly[[cadmium(II)‐bis[μ‐benzene‐1,2‐dicarboxylato‐κ4O1,O1′:O2,O2′]‐cadmium(II)‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole}‐κ2N2:N32N3:N2] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each CdII ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and two N atoms from two symmetry‐related imb ligands. Two CdII ions are connected by two benzene‐1,2‐dicarboxylate ligands to generate a binuclear [Cd2(1,2‐bdic)2] unit. The binuclear units are further connected into a one‐dimensional chain by pairs of bridging imb ligands. These one‐dimensional chains are further connected through N—H…O hydrogen bonds and π–π interactions, leading to a two‐dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairs via weak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.  相似文献   

14.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

15.
Coordination polymers are a thriving class of functional solid‐state materials and there have been noticeable efforts and progress toward designing periodic functional structures with desired geometrical attributes and chemical properties for targeted applications. Self‐assembly of metal ions and organic ligands is one of the most efficient and widely utilized methods for the construction of CPs under hydro(solvo)thermal conditions. 2‐(Pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylate (HPIDC2−) has been proven to be an excellent multidentate ligand due to its multiple deprotonation and coordination modes. Crystals of poly[aquabis[μ3‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ5N1,O5:N3,O4:N2]copper(II)dicopper(I)], [CuIICuI2(C10H5N3O4)2(H2O)]n, (I), were obtained from 2‐(pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PIDC) and copper(II) chloride under hydrothermal conditions. The asymmetric unit consists of one independent CuII ion, two CuI ions, two HPIDC2− ligands and one coordinated water molecule. The CuII centre displays a square‐pyramidal geometry (CuN2O3), with two N,O‐chelating HPIDC2− ligands occupying the basal plane in a trans geometry and one O atom from a coordinated water molecule in the axial position. The CuI atoms adopt three‐coordinated Y‐shaped coordinations. In each [CuN2O] unit, deprotonated HPIDC2− acts as an N,O‐chelating ligand, and a symmetry‐equivalent HPIDC2− ligand acts as an N‐atom donor via the pyridine group. The HPIDC2− ligands in the polymer serve as T‐shaped 3‐connectors and adopt a μ3‐κ2N,O2N′,O′:κN′′‐coordination mode, linking one CuII and two CuI cations. The Cu cations are arranged in one‐dimensional –Cu1–Cu2–Cu3– chains along the [001] direction. Further crosslinking of these chains by HPIDC2− ligands along the b axis in a –Cu2–HPIDC2−–Cu3–HPIDC2−–Cu1– sequence results in a two‐dimensional polymer in the (100) plane. The resulting (2,3)‐connected net has a (123)2(12)3 topology. Powder X‐ray diffraction confirmed the phase purity for (I), and susceptibilty measurements indicated a very weak ferromagnetic behaviour. A thermogravimetric analysis shows the loss of the apical aqua ligand before decomposition of the title compound.  相似文献   

16.
In the coordination polymer, poly[[{μ‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole‐κ2N:N′}(μ‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] dimethylformamide monosolvate pentahydrate], {[Zn(C9H4O6)(C11H10N4)]·C3H7NO·5H2O}n, the ZnII ion is coordinated by two N atoms from two symmetry‐related 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole (bmi) ligands and two O atoms from two symmetry‐related 5‐carboxybenzene‐1,3‐dicarboxylate (Hbtc2−) ligands in a slightly distorted tetrahedral geometry. The ZnII ions are bridged by Hbtc2− and bmi ligands, leading to a 4‐connected two‐dimensional network with the topological notation (44.62). Adjacent layers are further connected by 12 kinds of hydrogen bonds and also by π–π interactions, resulting in a three‐dimensional supramolecular architecture in the solid state.  相似文献   

17.
A novel three‐dimensional (3D) ZnII coordination polymer, namely, poly[[[1,4‐bis(pyridin‐4‐yl)benzene](μ3‐3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoato)zinc(II)] 1,4‐bis(pyridin‐4‐yl)benzene], {[Zn(C22H16O6)(C16H12N2)]·C16H12N2}n or {[Zn(PMBD)(DPB)]·DPB}n, 1 , where H2PMBD is 3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoic acid and DPB is 1,4‐bis(pyridin‐4‐yl)benzene, has been synthesized by self‐assembly using zinc nitrate, a semi‐rigid dicarboxylic acid and a nitrogen‐containing ligand. The single‐crystal X‐ray structure determination indicates that 1 possesses an intriguing 3D architecture with a 4‐connected uninodal cds topology, which is constructed from dinuclear {Zn2} clusters and V‐shaped PMBD2? linkers. Compound 1 exhibits excellent photocatalytic activity on the degradation of the organic dyes Rhodamine B (RhB), Rhodamine 6G (Rh6G) and Methyl Red (MR).  相似文献   

18.
In catena‐poly[[aqua[1,3‐bis(pyridine‐3‐ylmethoxy)benzene‐κN]zinc(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetrahedrally coordinated by two O atoms of bridging carboxylate groups from two benzene‐1,4‐dicarboxylate anions (denoted L2−), one O atom from a water molecule and one N atom from a 1,3‐bis[(pyridin‐3‐yl)methoxy]benzene ligand (denoted bpmb). (Aqua)O—H...N hydrogen‐bonding interactions induce the formation of one‐dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are interlinked through (aqua)O—H...O hydrogen‐bonding interactions, producing two‐dimensional corrugated sheets.  相似文献   

19.
Two new two‐dimensional coordination polymers, poly­[[[aqua(2,2′‐bi­pyridine‐κ2N,N′)manganese(II)]‐μ3p‐phenyl­enebis­(oxy­acet­ato)‐κ3O:O′:O′′] dihydrate], {[Mn(C10H8O6)(C10H8N2)(H2O)]·2H2O}n, (I), and poly­[[di‐μ‐aqua‐bis­[aqua­sodium(I)]]‐μ4p‐phenyl­enebis­(oxy­acetato)‐κO:O′,O′′:O′′′,O′′′′:O′′′′′], [Na2(C10H8O6)(H2O)4]n, (II), have been synthesized and characterized by X‐ray single‐crystal diffraction. In (I), there are two 1,4‐BDOA2− [p‐phenyl­enebis­(oxy­acetate) or, more commonly, benzene‐1,4‐dioxy­acetate] ligands, each lying about inversion centres, while in (II), there is one such ligand and it also has crystallographically imposed inversion symmetry. In (I), each MnII atom displays an octahedral MnN2O4 configuration, defined by three carboxyl O atoms of different 1,4‐BDOA2− groups, two N atoms of one 2,2′‐bi­pyridine ligand and one water mol­ecule. In (II), each NaI atom is octahedrally coordinated by one ether O atom, two carboxyl O atoms of different 1,4‐BDOA2− ligands and three water mol­ecules. The metal ions in complexes (I) and (II) are bridged by 1,4‐BDOA2− groups into two‐dimensional layer structures. Furthermore, three‐dimensional supramolecular networks are constructed via hydrogen bonds in (I) and (II), and by additional π–π stacking interactions in (I).  相似文献   

20.
The design and synthesis of new organic lgands is important to the rapid development of coordination polymers (CPs). However, CPs based on asymmetric ligands are still rare, mainly because such ligands are usually expensive and more difficult to synthesize. The new asymmetric ligand 4‐[4‐(1H‐imidazol‐1‐yl)phenyl]pyridine (IPP) has been used to construct the title one‐dimensional coordination polymer, catena‐poly[[[aqua{4‐[4‐(1H‐imidazol‐1‐yl‐κN3)phenyl]pyridine}cadmium(II)]‐μ‐5‐hydroxybenzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3] monohydrate], {[Cd(C8H4O5)(C14H11N3)2(H2O)]·H2O}n, under hydrothermal reaction of IPP with CdII in the presence of 5‐hydroxyisophthalic acid (5‐OH‐H2bdc). The CdII cation is coordinated by two N atoms from two distinct IPP ligands, three carboxylate O atoms from two different 5‐OH‐bdc2− dianionic ligands and one water O atom in a distorted octahedral geometry. The cationic [Cd(IPP)2]2+ nodes are linked by 5‐OH‐bdc2− ligands to generate a one‐dimensional chain. These chains are extended into a two‐dimensional layer structure via O—H…O and O—H…N hydrogen bonds and π–π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号