共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,we discuss the local discontinuous Galerkin methods coupled with two specific explicitimplicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut=(a(U)Ux)x.The basic idea is to add and subtract two equal terms a0 Uxx the right-hand side of the partial differential equation,then to treat the term a0 Uxx implicitly and the other terms(a(U)Ux)x-a0 Uxx explicitly.We give stability analysis for the method on a simplified model by the aid of energy analysis,which gives a guidance for the choice of a0,i.e.,a0≥max{a(u)}/2 to ensure the unconditional stability of the first order and second order schemes.The optimal error estimate is also derived for the simplified model,and numerical experiments are given to demonstrate the stability,accuracy and performance of the schemes for nonlinear diffusion equations. 相似文献
2.
This article presents a new type of second‐order scheme for solving the system of Euler equations, which combines the Runge‐Kutta discontinuous Galerkin (DG) finite element method and the kinetic flux vector splitting (KFVS) scheme. We first discretize the Euler equations in space with the DG method and then the resulting system from the method‐of‐lines approach will be discretized using a Runge‐Kutta method. Finally, a second‐order KFVS method is used to construct the numerical flux. The proposed scheme preserves the main advantages of the DG finite element method including its flexibility in handling irregular solution domains and in parallelization. The efficiency and effectiveness of the proposed method are illustrated by several numerical examples in one‐ and two‐dimensional spaces. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006 相似文献
3.
Lunji Song Gung‐Min Gie Ming‐Cheng Shiue 《Numerical Methods for Partial Differential Equations》2013,29(4):1341-1366
We prove existence and numerical stability of numerical solutions of three fully discrete interior penalty discontinuous Galerkin methods for solving nonlinear parabolic equations. Under some appropriate regularity conditions, we give the l2(H1) and l∞(L2) error estimates of the fully discrete symmetric interior penalty discontinuous Galerkin–scheme with the implicit θ ‐schemes in time, which include backward Euler and Crank–Nicolson finite difference approximations. Our estimates are optimal with respect to the mesh size h. The theoretical results are confirmed by some numerical experiments. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
4.
B. Kleefeld J. Martín‐Vaquero 《Numerical Methods for Partial Differential Equations》2013,29(1):170-185
Traditionally, explicit numerical algorithms have not been used with stiff ordinary differential equations (ODEs) due to their stability. Implicit schemes are usually very expensive when used to solve systems of ODEs with very large dimension. Stabilized Runge‐Kutta methods (also called Runge–Kutta–Chebyshev methods) were proposed to try to avoid these difficulties. The Runge–Kutta methods are explicit methods with extended stability domains, usually along the negative real axis. They can easily be applied to large problem classes with low memory demand, they do not require algebra routines or the solution of large and complicated systems of nonlinear equations, and they are especially suited for discretizations using the method of lines of two and three dimensional parabolic partial differential equations. In Martín‐Vaquero and Janssen [Comput Phys Commun 180 (2009), 1802–1810], we showed that previous codes based on stabilized Runge–Kutta algorithms have some difficulties in solving problems with very large eigenvalues and we derived a new code, SERK2, based on sixth‐order polynomials. Here, we develop a new method based on second‐order polynomials with up to 250 stages and good stability properties. These methods are efficient numerical integrators of very stiff ODEs. Numerical experiments with both smooth and nonsmooth data support the efficiency and accuracy of the new algorithms when compared to other well‐known second‐order methods such as RKC and ROCK2. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013 相似文献
5.
Rongpei Zhang Xijun Yu Guozhong Zhao 《Numerical Methods for Partial Differential Equations》2012,28(6):2010-2020
In this article, we present local discontinuous Galerkin (LDG) method for solving a model of energy exchanges in an N ‐carrier system with Neumann boundary conditions. This model extends the concept of the well‐known parabolic two‐step model for microheat transfer to the energy exchanges in a generalized N ‐carrier system with heat sources. The energy norm stability and error estimate of the LDG method is proved for solving N ‐carrier system. Some numerical examples are given. The numerical results when compared with the exact solution and other numerical results indicate that the present method is seen to be a very good alternative to some existing techniques for realistic problems. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011 相似文献
6.
7.
In this paper, we investigate a fully discrete local discontinuous Galerkin approximation of a non-linear non-Fickian diffusion model in viscoelastic polymers. For the spatial discretization, we adopt local discontinuous Galerkin finite element method and for the time discretization we use backward Euler method. We derive the stability estimate and a priori error estimate for the discrete scheme. Numerical examples are given to verify the theoretical findings. 相似文献
8.
Zacharoula Kalogiratou Theodore Monovasilis Theodore E. Simos 《Mathematical Methods in the Applied Sciences》2019,42(6):1955-1966
Two‐derivative Runge‐Kutta methods are Runge‐Kutta methods for problems of the form y′ = f(y) that include the second derivative y′′ = g(y) = f ′(y)f(y) and were developed in the work of Chan and Tsai. In this work, we consider explicit methods and construct a family of fifth‐order methods with three stages of the general case that use several evaluations of f and g per step. For problems with oscillatory solution and in the case that a good estimate of the dominant frequency is known, methods with frequency‐dependent coefficients are used; there are several procedures for constructing such methods. We give the general framework for the construction of methods with variable coefficients following the approach of Simos. We modify the above family to derive methods with frequency‐dependent coefficients following this approach as well as the approach given by Vanden Berghe. We provide numerical results to demonstrate the efficiency of the new methods using three test problems. 相似文献
9.
Lunji Song 《Numerical Methods for Partial Differential Equations》2012,28(1):288-311
In this article, we investigate interior penalty discontinuous Galerkin (IPDG) methods for solving a class of two‐dimensional nonlinear parabolic equations. For semi‐discrete IPDG schemes on a quasi‐uniform family of meshes, we obtain a priori bounds on solutions measured in the L2 norm and in the broken Sobolev norm. The fully discrete IPDG schemes considered are based on the approximation by forward Euler difference in time and broken Sobolev space. Under a restriction related to the mesh size and time step, an hp ‐version of an a priori l∞(L2) and l2(H1) error estimate is derived and numerical experiments are presented.© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 288–311, 2012 相似文献
10.
汪继文 《高校应用数学学报(A辑)》2003,18(1):33-38
研究求解一种产生于径向渗流问题的推广的对流扩散方程的局部化间断Galerkin方法,对一般非线性情形证明了方法的L^2稳定性;对线性情形证明了,当方法取有限元空间为κ次多项式空间时,数值解逼近的L^∞(0,T;L^2)模的误差阶为κ。 相似文献
11.
Guanying Sun Dong Liang Wenqia Wang 《Numerical Methods for Partial Differential Equations》2009,25(2):470-493
In this article we consider the age structured population growth model of marine invertebrates. The problem is a nonlinear coupled system of the age‐density distribution of sessile adults and the abundance of larvae. We propose the semidiscrete and fully‐discrete discontinuous Galerkin schemes to the nonlinear problem. The DG method is well suited to approximate the local behavior of the problem and to easily take the locally refined meshes with hanging nodes adaptively. The simple communication pattern between elements makes the DG method ideal for parallel computation. The global existence of the approximation solution is proved for the nonlinear approximation system by using the broken Sobolev spaces and the Schauder's fixed point theorem, and error estimates are obtained for both the semidiscrete scheme and the fully‐discrete scheme. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009 相似文献
12.
This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L 2(H 1) and L 2(L 2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition k n ≥ch 2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results. 相似文献
13.
Mahboub Baccouch 《Numerical Methods for Partial Differential Equations》2021,37(1):505-532
In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy) , in a rectangular region Ω with classical boundary conditions on the boundary of Ω . Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1 , and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal. 相似文献
14.
In this paper we analyze the coupling of local discontinuous Galerkin (LDG) and boundary element methods as applied to linear exterior boundary value problems in the plane. As a model problem we consider a Poisson equation in an annular polygonal domain coupled with a Laplace equation in the surrounding unbounded exterior region. The technique resembles the usual coupling of finite elements and boundary elements, but the corresponding analysis becomes quite different. In particular, in order to deal with the weak continuity of the traces at the interface boundary, we need to define a mortar-type auxiliary unknown representing an interior approximation of the normal derivative. We prove the stability of the resulting discrete scheme with respect to a mesh-dependent norm and derive a Strang-type estimate for the associated error. Finally, we apply local and global approximation properties of the subspaces involved to obtain the a priori error estimate in the energy norm.
15.
We introduce a new discontinuous Galerkin approach for time integration. On the basis of the method of weighted residual, numerical quadratures are employed in the finite element time discretization to account for general nonlinear ordinary differential equations. Many different conditions, including explicit, implicit, and symplectic conditions, are enforced for the test functions in the variational analysis to obtain desirable features of the resulting time‐stepping scheme. The proposed discontinuous Galerkin approach provides a unified framework to derive various time‐stepping schemes, such as low‐order one‐step methods, Runge–Kutta methods, and multistep methods. On the basis of the proposed framework, several explicit Runge–Kutta methods of different orders are constructed. The derivation of symplectic Runge–Kutta methods has also been realized. The proposed framework allows the optimization of new schemes in terms of several characteristics, such as accuracy, sparseness, and stability. The accuracy optimization is performed on the basis of an analytical form of the error estimation function for a linear test initial value problem. Schemes with higher formal order of accuracy are found to provide more accurate solutions. We have also explored the optimization potential of sparseness, which is related to the general compressive sensing in signal/imaging processing. Two critical dimensions of the stability region, that is, maximal intervals along the imaginary and negative real axes, are employed as the criteria for stability optimization. This gives the largest Courant–Friedrichs–Lewy time steps in solving hyperbolic and parabolic partial differential equations, respectively. Numerical experiments are conducted to validate the optimized time‐stepping schemes. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
Jing Wen Jian Su Yinnian He Hongbin Chen 《Numerical Methods for Partial Differential Equations》2021,37(1):383-405
In this paper, a semi‐discrete scheme and a fully discrete scheme of the Stokes‐Biot model are proposed, and we analyze the semi‐discrete scheme in detail. First of all, we prove the existence and uniqueness of the semi‐discrete scheme, and a‐priori error estimates are derived. Then, we present the same conclusions for the fully discrete scheme. Finally, under both matching and non‐matching meshes some numerical tests are given to validate the analysis of convergence, which well support the theoretical results. 相似文献
17.
Asymptotically exact a posteriori local discontinuous Galerkin error estimates for the one‐dimensional second‐order wave equation 下载免费PDF全文
Mahboub Baccouch 《Numerical Methods for Partial Differential Equations》2015,31(5):1461-1491
In this article, we analyze a residual‐based a posteriori error estimates of the spatial errors for the semidiscrete local discontinuous Galerkin (LDG) method applied to the one‐dimensional second‐order wave equation. These error estimates are computationally simple and are obtained by solving a local steady problem with no boundary condition on each element. We apply the optimal L2 error estimates and the superconvergence results of Part I of this work [Baccouch, Numer Methods Partial Differential Equations 30 (2014), 862–901] to prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its spatial derivative, at a fixed time, converge to the true spatial errors in the L2‐norm under mesh refinement. The order of convergence is proved to be , when p‐degree piecewise polynomials with are used. As a consequence, we prove that the LDG method combined with the a posteriori error estimation procedure yields both accurate error estimates and superconvergent solutions. Our computational results show higher convergence rate. We further prove that the global effectivity indices, for both the solution and its derivative, in the L2‐norm converge to unity at rate while numerically they exhibit and rates, respectively. Numerical experiments are shown to validate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1461–1491, 2015 相似文献
18.
Error estimates to smooth solutions of semi‐discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws 下载免费PDF全文
In this article, we focus on error estimates to smooth solutions of semi‐discrete discontinuous Galerkin (DG) methods with quadrature rules for scalar conservation laws. The main techniques we use are energy estimate and Taylor expansion first introduced by Zhang and Shu in (Zhang and Shu, SIAM J Num Anal 42 (2004), 641–666). We show that, with (piecewise polynomials of degree k) finite elements in 1D problems, if the quadrature over elements is exact for polynomials of degree , error estimates of are obtained for general monotone fluxes, and optimal estimates of are obtained for upwind fluxes. For multidimensional problems, if in addition quadrature over edges is exact for polynomials of degree , error estimates of are obtained for general monotone fluxes, and are obtained for monotone and sufficiently smooth numerical fluxes. Numerical results validate our analysis. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 467–488, 2017 相似文献
19.
《Numerical Methods for Partial Differential Equations》2018,34(1):184-210
In this article, we present a new multiscale discontinuous Petrov–Galerkin method (MsDPGM) for multiscale elliptic problems. This method utilizes the classical oversampling multiscale basis in the framework of a Petrov–Galerkin version of the discontinuous Galerkin method, allowing us to better cope with multiscale features in the solution. MsDPGM takes advantage of the multiscale Petrov–Galerkin method (MsPGM) and the discontinuous Galerkin method (DGM). It can eliminate the resonance error completely and decrease the computational costs of assembling the stiffness matrix, thus, allowing for more efficient solution algorithms. On the basis of a new H2 norm error estimate between the multiscale solution and the homogenized solution with the first‐order corrector, we give a detailed convergence analysis of the MsDPGM under the assumption of periodic oscillating coefficients. We also investigate a multiscale discontinuous Galerkin method (MsDGM) whose bilinear form is the same as that of the DGM but the approximation space is constructed from the classical oversampling multiscale basis functions. This method has not been analyzed theoretically or numerically in the literature yet. Numerical experiments are carried out on the multiscale elliptic problems with periodic and randomly generated log‐normal coefficients. Their results demonstrate the efficiency of the proposed method. 相似文献