首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.  相似文献   

2.
Linear low‐density polyethylene (LLDPE) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs) and varying amounts of three different kinds of talc (phyllo silicate), each with a different particle size distribution, to examine the effect of these filler combinations with regards to the electrical percolation behavior. The state of the filler dispersion was assessed using transmission light microscopy and electron microscopy. The use of talc as a second filler during the melt mixing of LLDPE/MWCNT composites resulted in an improvement in the dispersion of the MWCNTs and a decrease of the electrical percolation threshold. Talc with lower particle sizes showed a more pronounced effect than talc with larger particle sizes. However, the improvement in dispersion was not reflected in the mechanical properties. Modulus and stress values increase with both, MWCNT and talc addition, but not in a synergistic manner. The crystallization behavior of the composites was studied by differential scanning calorimetry to determine its potential influence on the electrical percolation threshold. It was found that the crystallinity of the matrix increased slightly with the addition of talc but no further increments were observed with the incorporation of the MWCNTs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1680–1691  相似文献   

3.
This article reports the results of an investigation into the time‐dependent morphological and rheological changes that accompany the in‐situ polymerization of blends composed of poly(hydroxyether of bisphenol A) (phenoxy) and poly(styrene‐co‐acrylonitrile) (SAN). The rheological behavior was monitored continuously during the in‐situ polymerization, whereas the miscibility and phase structure of blends formed in situ were examined at discrete stages of polymerization by differential scanning calorimetry and transmission electron microscopy. In the blend with 30 wt % SAN, a co‐continuous blend morphology was associated with gradual changes in the dynamic moduli, suggesting that phase separation proceeded by spinodal decomposition (SD). In contrast, phenoxy‐rich dispersions were uniformly dispersed in a continuous SAN‐rich matrix in the blend with 50 wt % SAN, and the corresponding rheological signature revealed a sharp initial increase in the dynamic moduli, followed by slower growth after long times, indicative of phase separation via nucleation and growth (NG). The rheological property changes are closely related to morphology development and mechanisms of phase separation induced duringin‐situ polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2614–2619, 2007  相似文献   

4.
A study was made on the effect of small amounts of organically modified clay on the morphology and mechanical properties of blends of low‐density polyethylene and polyamide 11 at different compositions. The influence of the filler on the blend morphology was investigated using wide angle X‐ray diffractometry, scanning and transmission electron microscopy and selective extraction experiments. The filler was found to locate predominantly in the more hydrophilic polyamide phase. Although such uneven distribution does not have a significant effect on the onset of phase co‐continuity of the polymer components, it brings about a drastic refinement of the microstructure for the blends both with droplets/matrix and co‐continuous morphologies. In addition to the expected reinforcing action of the filler, the resulting fine microstructure plays an important role in enhancing the mechanical properties of the blends. This is essentially because of a good quality of stress transfer across the interface between the constituents, which also seems to benefit for a good interfacial adhesion promoted by the filler. Our results provide the experimental evidence for the capabilities of nanoparticles added to multiphase polymer systems to act selectively as a reinforcing agent for specific domains of the material and as a medium able to assist the refinement of the polymer phases during mixing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 600–609, 2010  相似文献   

5.
The promising perspectives of PLLA‐based nanostructured biomaterials and their relevance in tissue engineering are reported. Nanocomposites based on PLLA and MWCNTs are developed with an MWCNT content ranging from 0 to 3 wt%. The electrical properties show a percolation threshold within a range of 0.21–0.33 wt% MWCNTs, and the conductivity increases by six orders of magnitude. The surface structure shows changes with the carbon nanotube concentration. The functional role of MWCNTs incorporation in terms of interactions with adult stem cells suggests that PLLA/MWCNT nanocomposites are suitable substrates for primary stem cell culture.

  相似文献   


6.
The biodegradable polylactide composites containing carbon nanotubes (CNTs) with high aspect ratio (HAR) and low aspect ratio (LAR) were prepared by melt mixing. The physical properties of those two systems were characterized in terms of rheology, conductivity, and mechanical properties for establishing preliminary structure–property relations. Several viscoelastic models were then used to further describe the relations between aspect ratio and percolation network of CNTs. The results show that these two CNTs present different structural characteristics in the polylactide (PLA) matrix during melt mixing: the LAR CNTs are far stiffer than the HAR CNTs. At low loading levels, the former is dispersed as bent fibers or their small bundles, whereas the latter is dispersed as self‐entangled flocs, presenting far larger hydrodynamic radius than the former. At high loading levels, both are dispersed as flocs due to strong tube–tube interactions. However, the two CNTs show approximate average floc size and mesh size because they present same rigid length and effective aspect ratio. At identical loadings, therefore, the HAR CNTs have more total number of flocs than that of the LAR CNTs, forming network with more compact structure and imparting higher contributions to properties of the composites as a result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 479–489, 2010  相似文献   

7.
This article examines the effects of dispersed phase concentration, processing apparatus, viscosity ratio, and interfacial compatibilization using an SAN–amine compatibilizer on the morphology of blends of bisphenol A–polycarbonate (PC) with styrene–acrylonitrile (SAN) copolymers. For uncompatibilized blends, the dispersed phase particle size increased significantly with SAN concentration, and was found to exhibit a minimum at a viscosity ratio of approximately 0.35 for a fixed concentration of 30% SAN in the blend. Although the morphology of uncompatibilized PC/SAN blends mixed in a Brabender mixer, single‐ and twin‐screw extruders were quite similar, the twin‐screw extruder produced significantly finer morphologies in blends containing SAN–amine. The average particle size for blends compatibilized with the SAN–amine polymer was approximately half that of uncompatibilized blends and was relatively independent of viscosity ratio and dispersed phase composition. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 71–82, 1999  相似文献   

8.
Over the last 10 years, research into co‐continuous polymer blends has been intense. Despite these efforts, there are very few detailed studies on the stability of this complex morphology. In this work, blends of poly(ε‐caprolactone) and polystyrene were melt‐mixed in an internal mixer for time intervals of 0.5–120 min at set temperatures of 140 and 170 °C, and the effect of the mixing time on the co‐continuous morphology was studied. This blend system was chosen because each component could be selectively dissolved and this allowed for a complete study of the co‐continuous region. The phase continuity was measured with a solvent‐extraction gravimetric technique, and the concentration range for co‐continuity was determined. The phase size and phase size distribution were obtained with the mercury intrusion porosimetry technique. The results indicate that the co‐continuous morphology forms very early in the mixing process and achieves a stable morphology within the first 5 min of mixing for virtually all the co‐continuous compositions. For all cases studied, the co‐continuous morphology remains unchanged over mixing times as long as 1–2 h. These results support the notion of a stable steady‐state formation of co‐continuous morphologies during melt mixing similar to that observed for matrix/dispersed phase type blends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 864–872, 2007  相似文献   

9.
Polypropylene (PP) and acrylonitrile‐butadiene‐styrene (ABS) blends with multiwall carbon nanotubes (MWNT) were prepared by melt mixing. PP/ABS blends without MWNT revealed coarse co continuous structures on varying the ABS content from 40 to 70 wt %. Bulk electrical conductivity of the blends showed lower percolation threshold (0.4–0.5 wt %) in the 45/55 co continuous blends whereas the percolation threshold was between 2 and 3 wt % in matrix‐particle dispersed morphology of 80/20 blends. Interestingly, droplet size was observed to decrease with addition of MWNT above percolation threshold in 80/20 blends. Further, the bulk electrical conductivity was found to be dependent on the melt flow index of PP. The non‐polar or weakly polar nature of blends constituents resulted in the temperature independent dielectric constant, dielectric loss, and DC electrical conductivity. Rheological analysis revealed the formation of 3D network‐like structure in 80/20 PP/ABS blends at 3 wt % MWNT. An attempt was made to understand the relationship between rheology, morphology, and electrical conductivity of these blends. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2286–2295, 2008  相似文献   

10.
Multiwalled carbon nanotubes (purified, p‐MWNT and ~ NH2 functionalized, f‐MWNT) were melt‐mixed with 50/50 cocontinuous blends of polyamide 6 (PA6) and acrylonitrile–butadiene–styrene in a conical twin‐screw microcompounder to obtain conductive polymer blends utilizing the conceptual approach of double‐percolation. The state of dispersion of the tubes was assessed using AC electrical conductivity measurements and melt‐rheology. The rheological and the electrical percolation threshold was observed to be ~ 1–2 wt % and ~ 3–4 wt %, respectively, for blends with p‐MWNT. In case of blends with f‐MWNT, the rheological percolation threshold was observed to be higher (2–3 wt %) than p‐MWNT but the electrical percolation threshold remained almost same. However, the absolute values were significantly lower than blends with p‐MWNT. In addition, significant refinement in the cocontinuous morphology of the blends with increasing concentration of MWNT was observed in both the cases. Further, an attempt was made to understand the underlying concepts in relation to cocontinuous morphologies that how the geometrical percolation threshold which adversely suffered because of the attrition of tubes under prolonged shear contributed further in retaining the rheological percolation threshold. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1619–1631, 2008  相似文献   

11.
Polyethylene (PE)‐layered vermiculite (VMT) nanocomposites were fabricated via direct melt compounding in a twin‐screw extruder followed by injection molding. Exfoliated PE/VMT nanocomposites were readily prepared via in situ melt mixing of maleic anhydride modified VMT with PE. Maleic anhydride acts as either the intercalation agent for VMT or as a compatibilizer for the PE and VMT phases. X‐ray diffraction and transmission electron microscopic observations revealed the formation of exfoliated PE/VMT nanocomposites. The experimental results showed that the storage modulus and strength of nanocomposites tend to increase with an increasing VMT content. Nearly 25.35% increment in the tensile strength and 50% increment in the storage modulus were achieved by incorporating 4 wt % VMT into PE. The thermal properties of the nanocomposites were investigated by dynamic mechanical analysis and differential scanning calorimetry. The glass‐transition temperature of PE/VMT nanocomposites appeared to increase upon the introduction of VMT into the PE matrix. The effects of maleic anhydride addition on the formation of the PE/VMT nanocomposites are discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1476–1484, 2003  相似文献   

12.
Immiscible polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blends with two different compositions, one (PP/EVA = 80/20) exhibits the typical sea‐island morphology and the other (PP/EVA = 60/40) exhibits the cocontinuous morphology, were prepared with different contents of f‐MWCNTs. The fracture behaviors, including notched Izod impact fracture and single‐edge notched tensile (SENT) fracture, were comparatively studied to establish the role of f‐MWCNTs in influencing the fracture toughness of PP/EVA blends. Our results showed that, for PP/EVA (80/20) system, f‐MWCNTs do not induce the fracture behavior change apparently. However, for PP/EVA (60/40) system, the fracture toughness of the blend increases dramatically with the increasing of f‐MWCNTs content. More severe plastic deformation accompanied by the fibrillar structure formation was observed during the SENT test. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/EVA (60/40) with f‐MWCNTs is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage. Further results based on crystalline structures and morphologies of the blends showed that a so‐called dual‐network structure of EVA and f‐MWCNTs forms in cocontinuous PP/EVA blends, which is thought to be the main reason for the largely improved fracture toughness of the sample. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1331–1344, 2009  相似文献   

13.
Multiwalled carbon nanotubes (CNTs)/polyethylene micro‐nanofibers with content ranging from 0.5 to 10 wt% of CNTs were prepared for the first time by melt extrusion of immiscible blends with cellulose acetate butyrate (CAB) and subsequent removal of CAB matrix. The morphology development of dispersed phase was studied with samples collected at different zones in a twin‐screw extruder. The morphology of the CNTs in PE was found to be in forms of both individual and agglomerations. The average diameters of CNTs/PE nanofibers increased with increasing the CNTs content. The electrical conductivity of CNTs/PE nanofibers was studied and a percolation threshold of about 4 wt% was obtained. In addition, the crystalline structures of the CNTs/PE nanofibers were analyzed, indicating a decrease in the crystallinity with the addition of CNTs. The thermal properties of composite fibrils were also modified. This paper demonstrates a good approach for the preparation of CNTs/TP nanofibers by in situ microfibrillar formation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Two multi‐walled carbon nanotubes (MWCNTs) having relatively high aspect ratios of 313 and 474 with approximately the same diameter were melt mixed with polycarbonate (PC) in a twin‐screw conical micro compounder. The effects of aspect ratio on the electrical, mechanical, and thermal properties of the PC/MWCNT composites were investigated. Electrical conductivities and storage moduli of the filled samples are found to be independent of the starting aspect ratio for these high aspect ratio tubes; although the conductivities and storage moduli are still significantly higher than values of composites made with nanotubes having more commercially common aspect ratios of ~100. Transmission electron microscopy results suggest that melt‐mixing reduces these longer nanotubes to the same length, but still approximately two times longer than the length of commercially common aspect ratio tubes after melt‐mixing. Molecular weight measurements show that during melt‐mixing the longer nanotubes significantly degrade the molecular weight of the polymer as compared to very similar nanotubes with aspect ratio ~100. Because of the molecular weight reduction glass transition temperatures predictably show a large decrease with increasing nanotube concentration. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 73–83  相似文献   

15.
Polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) nanocomposites with functionalized multiwalled carbon nanotubes (FMWCNTs) have been prepared. The dissolution experiment, transmission electronic microscope, and scanning electronic microscope characterizations prove that, in the nanocomposites with sea–island morphology, although some FMWCNTs are observed in both PP and EVA phases, most of FMWCNTs distribute at the interface; however, in the nanocomposites with cocontinuous morphology, FMWCNTs mainly distribute in EVA phase. Further results based on (differential scanning calorimetry) measurements show that the different dispersion states of FMWCNTs, which are resulted by the different melt blending sequences, result in the different crystallization behaviors of PP matrix. The mechanical measurements show that FMWCNTs exhibit apparent reinforcement and toughening effects for immiscible PP/EVA blends, and such effects are greatly dependent upon the blending sequences. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1882–1892, 2010  相似文献   

16.
Studies on the relationship between resistivity and dynamic rheological properties of carbon black‐filled high‐density polyethylene (CB/HDPE) composites were carried out. Change of resistivity ρ is associated with the dynamic modulus before the positive temperature coefficient/negative temperature coefficient (PTC/NTC) transition temperature. When the temperature approaches the melting point of HDPE, ρ increases rapidly with a decreasing modulus, corresponding to PTC transition. The resistivity‐dynamic viscoelasticity relationship in the PTC region can be divided into two parts in which the changes of ρ with storage modulus G′ and loss modulus G″ can be described by the scaling laws given by the critical storage modulus and loss modulus Gc and Gc; adjustable parameters ρ′1c, ρ′2c, ρ″1c and ρ″2c; and nonlinear exponents n and m, respectively. The accordance between the experimental data and the scaling functions of the dimensionless quantities (G′/Gc ? 1) and (G″/Gc ? 1) in the PTC transition region suggests that the ρ jump may be the result of a modulus‐induced percolation. Gc and Gc increase, but the four scaling resistivitis, ρ′1c, ρ′2c, ρ″1c, and ρ″2c, decrease with increasing CB concentration, implying that the microstructure change of the composites is the determinant factor for the PTC behavior and the resistivity‐dynamic modulus relationship. However, ρ′2c and ρ″2c exhibit no scaling dependence. It is suggested that a threshold concentration exists for the modulus of the composites on the basis of examining the plot of both Gc and Gc against CB concentration. The scaling laws G′ ~ Φx and G″ ~ Φy hold for the concentration dependence of the critical modulus when Φ > Φc and the estimated values of x and y are 1.10 ± 0.10 and 0.89 ± 0.29, respectively. The resistivity‐dynamic modulus can shift to form a master curve. The horizontal factors aG and aG and the vertical factors a′ and a″ are relevant to the concentration dependence of the dynamic modulus or PTC behavior. It is believed that the former would be involved in changing the mechanical microstructure formed by the complicated interaction of CB particle and polymer segments, and the latter would be involved in the overall changes of conducting a network during the PTC transition region. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 983–992, 2003  相似文献   

17.
Nylon‐6/glass‐fiber (GF)/liquid‐crystalline‐polymer (LCP) ternary blends with different viscosity ratios were prepared with three kinds of nylon‐6 with different viscosities as matrices. The rheological behaviors of these blends were characterized with capillary rheometry. The morphology was observed with scanning electron microscopy and polarizing optical microscopy. This study showed that although LCP did not fibrillate in binary nylon‐6/LCP blends, LCP fibrillated to a large aspect ratio in some ternary blends after GF was added. The addition of 5 wt % LCP significantly reduced the melt viscosity of nylon‐6/GF blends to such an extent that some nylon‐6/GF/LCP blends had quite low viscosities, not only lower than those of neat resins and nylon‐6/GF blends but also lower than those of corresponding nylon‐6/LCP blends. The mutual influence of the morphology and rheological properties was examined. The great reduction of the melt viscosity was considered the result of LCP fibrillation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1619–1627, 2004  相似文献   

18.
In this study, a novel multifunctional poly(arylene ether nitriles)(PEN)/carbon nanotubes/Fe3O4 nanocomposite with high tensile strength, magnetic, and electrical properties was investigated. First, we synthesized the monodisperse Fe3O4 nanoparticles on the surface of the multiwalled carbon nanotubes and then the hybrid material was compounded with PEN through the solution‐casting method. The SEM and TEM images indicated that the monodisperse Fe3O4 nanoparticles, with the diameters of 70∼80 nm, were self‐assembled along CNTs via the covalent bond method, which was confirmed by FTIR and XRD. The results of tensile properties showed that the tensile strength and modulus reached their highest values at the CNTs/Fe3O4 loading content of 1 wt % and both were greatly enhanced after heat treatment. Electrical conductivity of the polymer was dramatically enhanced at the low loading level of CNTs/Fe3O4; the electrical percolation of was in the range of 5∼8 wt % of CNTs/Fe3O4. The magnetic study showed that the saturation magnetization (Ms) of PEN/CNTs/Fe3O4 nanocomposites increased with the increase of CNTs/Fe3O4 loading content, and the coercive force (Hc) of the nanocomposite was independent of the CNTs/Fe3O4 content. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

19.
A new compatibilizer, poly(vinyl benzyloxy ethyl naphthalene)‐graft‐poly(methyl methacrylate), for poly(styrene‐co‐acrylonirile) (SAN)/multi‐walled carbon nanotubes (MWCNTs) composites was synthesized. It has been identified that naphthalene unit in backbone of compatibilizer interacts with MWCNTs via π? π interaction and that the PMMA graft of the compatibilizer is miscible with the SAN matrix. When a small amount of compatibilizer was added to SAN/MWCNT composites, MWCNTs were more homogeneously dispersed in SAN matrix than the case without compatibilizer, indicating that the compatibilizer improves the compatibility between SAN and MWCNTs. As a consequence, mechanical and electrical properties of the composites with compatibilizer were largely improved as compared with those of composites without compatibilizer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4184–4191, 2010  相似文献   

20.
PCL was blended with pristine multiwalled carbon nanotubes (MWCNT) and with a nanohybrid obtained from the same MWCNT but grafted with low molecular weight PCL, employing concentrations of 0.25 to 5 wt % of MWCNT and MWCNT‐g‐PCL. Excellent CNT dispersion was found in all samples leading to supernucleation of both nanofiller types. Nanohybrids with 1 wt % or less MWCNTs crystallize faster than nanocomposites (due to supernucleation), while the trend eventually reverses at higher nanotubes content (because of plasticization). Rheological results show that yield‐like behavior develops in both nanocomposites, even for the minimum content of carbon nanotubes. In addition, the MWCNT‐g‐PCL family, when compared with the neat polymer, exhibits lower values of viscosity and modulus in oscillatory shear, and higher compliance in creep. These rheological differences are discussed in terms of the plasticization effect caused by the existence of low molecular weight free and grafted PCL chains in the nanohybrids. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1310–1325  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号