首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the convergence of a finite volume scheme for a model of miscible two‐phase flow in porous media. In this model, one phase can dissolve into the other one. The convergence of the scheme is proved thanks to an estimate on the two pressures, which allows to prove some estimates on the discrete time derivative of some nonlinear functions of the unknowns. Monotony arguments allow to show some properties on the limits of these functions. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the space term. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 723–748, 2014  相似文献   

2.
Macro‐hybrid mixed variational models of two‐phase flow, through fractured porous media, are analyzed at the mesoscopic and macroscopic levels. The mesoscopic models are treated in terms of nonoverlapping domain decompositions, in such a manner that the porous rock matrix system and the fracture network interact across rock–rock, rock–fracture, and fracture–fracture interfaces, with flux transmission conditions dualized. Alternatively, the models are scaled to a macroscopic level via an asymptotic process, where the width of the fractures tends to zero, and the fracture network turns out to be an interface system of one less spatial dimension, with variable high permeability. The two‐phase flow is characterized by a fractional flow dual mixed variational model. Augmented two‐field and three‐field variational reformulations are presented for regularization, internal approximations, and macro‐hybrid mixed finite element implementation. Also abstract proximal‐point penalty‐duality algorithms are derived and analyzed for parallel computing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
4.
We consider a non‐stationary Stokes system in a thin porous medium Ω? of thickness ? which is perforated by periodically solid cylinders of size a ? . We are interested here to give the limit behavior when ? goes to zero. To do so, we apply an adaptation of the unfolding method. Time‐dependent Darcy's laws are rigorously derived from this model depending on the comparison between a ? and ? . Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Linear, steady, axisymmetric flow of a homogeneous fluid in a rigid, bounded, rotating, saturated porous medium is analyzed. The fluid motions are driven by differential rotation of horizontal boundaries. The dynamics of the interior region and vertical boundary layers are investigated as functions of the Ekman number E(=vL 2) and rotational Darcy 3 numberN(=kΩ/v) which measures the ratio between the Coriolis force and the Darcy frictional term. IfNE −1/2, the permeability is sufficiently high and the flow dynamics are the same as those of the conventional free flow problem with Stewartson'sE 1/3 andE 1/4 double layer structure. For values ofNE −1/2 the effect of porous medium is felt by the flow; the Taylor-Proudman constraint is no longer valid. ForNE −1/3 the porous medium strongly affects the flow; viscous side wall layer is absent to the lowest order and the fluid pumped by the Ekman layer, returns through a region of thicknessO(N −1). The intermediate rangeE −1/3NE −1/2 is characterized by double side wall layer structure: (1)E 1/3 layer to return the mass flux and (ii) (NE)1/2 layer to adjust the interior azimuthal velocity to that of the side wall. Spin-up problem is also discussed and it is shown that the steady state is reached quickly in a time scaleO(N).  相似文献   

6.
Two stationary plane free boundary value problems for the Navier‐Stokes equations are studied. The first problem models the viscous two‐fluid flow down a perturbed or slightly distorted inclined plane. The second one describes the viscous two‐fluid flow in a perturbed or slightly distorted channel. For sufficiently small data and under certain conditions on parameters the solvability and uniqueness results are proved for both problems. The asymptotic behaviour of the solutions is investigated. For the second problem an example of nonuniqueness is constructed. Computational results of flow problems that are very close to the above problems are presented. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this paper, we establish a homogenization result for a doubly nonlinear parabolic system arising from the hygro‐thermo‐chemical processes in porous media taking into account memory phenomena. We present a mesoscale model of the composite (heterogeneous) material where each component is considered as a porous system and the voids of the skeleton are partially saturated with liquid water. It is shown that the solution of the mesoscale problem is two‐scale convergent to that of the upscaled problem as the spatial parameter goes to zero.  相似文献   

8.
We consider a multicomponent fluid placed in a porous medium. The Ornstein—Zernike approximation is used to calculate the pair correlation functions for density fluctuations in the mixture components. We show that light scattering in the neighborhood of the critical state of the system is determined (in the single-scattering approximation) by the commonly known Ornstein—Zernike formula. We investigate the shift in the critical parameters due to the porous medium. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 146, No. 3, pp. 525–528, March, 2006.  相似文献   

9.
We investigate a linear, fully coupled thermoelasticity problem for a highly heterogeneous, two‐phase medium. The medium in question consists of a connected matrix with disconnected, initially periodically distributed inclusions separated by a sharp interface undergoing an a priori known interface movement because of phase transformations. After transforming the moving geometry to an ? ‐periodic, fixed reference domain, we establish the well‐posedness of the model and derive a number of ? ‐independent a priori estimates. Via a two‐scale convergence argument, we then show that the ? ‐dependent solutions converge to solutions of a corresponding upscaled model with distributed time‐dependent microstructures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
We discretize in space the equations obtained at each time step when discretizing in time a Navier‐Stokes system modelling the two‐dimensional flow in a horizontal pipe of two immiscible fluids with comparable densities, but very different viscosities. At each time step the system reduces to a generalized Stokes problem with nonstandard conditions at the boundary and at the interface between the two fluids. We discretize this system with the “mini‐element” and establish error estimates. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

11.
12.
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two‐phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper deals with a porous medium system with nonlocal sources and weighted nonlocal boundary conditions. The main aim of this paper is to study how the reaction terms, the diffusion terms, and the weight functions in the boundary conditions affect the global and blow‐up properties to a porous medium system. The conditions on the global existence and blow‐up in finite time for nonnegative solutions are given. Furthermore, the blow‐up rate estimates of the blow‐up solutions are also established. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A new high‐resolution indecomposable quasi‐characteristics scheme with monotone properties based on pyramidal stencil is considered. This scheme is based on consideration of two high‐resolution numerical schemes approximated governing equations on the pyramidal stencil with different kinds of dispersion terms approximation. Two numerical solutions obtained by these schemes are analyzed, and the final solution is chosen according to the special criterion to provide the monotone properties in regions where discontinuities of solutions could arise. This technique allows to construct the high‐order monotone solutions and keeps both the monotone properties and the high‐order approximation in regions with discontinuities of solutions. The selection criterion has a local character suitable for parallel computation. Application of the proposed technique to the solution of the time‐dependent 2D two‐phase flows through the porous media with the essentially heterogeneous properties is considered, and some numerical results are presented. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 44–55, 2002  相似文献   

15.
In this paper, we establish global existence of strong solutions to the 3D incompressible two‐fluid MHD equations with small initial data. In addition, the explicit convergence rate of strong solutions from the two‐fluid MHD equations to the Hall‐MHD equations is obtained as . Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
We study numerical approximations of positive solutions of the porous medium equation with a nonlinear source, where m > 1, p > 0 and L > 0 are parameters. We describe in terms of p, m, and L when solutions of a semidiscretization in space exist globally in time and when they blow up in a finite time. We also find the blow‐up rates and the blow‐up sets, proving that there is no regional blow‐up for the numerical scheme. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

17.
We consider the homogenization of a time‐dependent heat transfer problem in a highly heterogeneous periodic medium made of two connected components having comparable heat capacities and conductivities, separated by a third material with thickness of the same order ε as the basic periodicity cell but having a much lower conductivity such that the resulting interstitial heat flow is scaled by a factor λ tending to zero with a rate λ=λ(ε). The heat flux vectors aj, j=1,2,3 are non‐linear, monotone functions of the temperature gradient. The heat capacities cj(x) are positive, but may vanish at some subsets such that the problem can be degenerate (parabolic–elliptic). We show that the critical value of the problem is δ=limε→0εp/λ and identify the homogenized problem depending on whether δ is zero, strictly positive finite or infinite. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A dual‐porosity model describing two‐phase, incompressible, immiscible flows in a fractured reservoir is considered. Indeed, relations among fracture mobilities, fracture capillary presure, matrix mobilities, and matrix capillary presure of the model are mainly concerned. Roughly speaking, proper relations for these functions are (1) Fracture mobilities go to zero slower than matrix mobilities as fracture and matrix saturations go to their limits, (2) Fracture mobilities times derivative of fracture capillary presure and matrix mobilities times derivative of matrix capillary presure are both integrable functions. Galerkin's method is used to study this problem. Under above two conditions, convergence of discretized solutions obtained by Galerkin's method is shown by using compactness and monotonicity methods. Uniqueness of solution is studied by a duality argument. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The article studies the homogenization of a stationary Navier-Stokes fluid in porous medium with thin film under Dirichlet boundary condition.At the end of the article,"Darcy's law"is rigorously derived from this model as the parameter ε tends to zero,which is independent of the coordinates towards the thickness.  相似文献   

20.
This paper presents a study of immiscible compressible two‐phase, such as water and gas, flow through double porosity media. The microscopic model consists of the usual equations derived from the mass conservation laws of both fluids, along with the standard Darcy–Muskat law relating the velocities to the pressure gradients and gravitational effects. The problem is written in terms of the phase formulation, that is, where the phase pressures and the phase saturations are primary unknowns. The fractured medium consists of periodically repeating homogeneous blocks and fractures, where the absolute permeability of the medium becomes discontinuous. Consequently, the model involves highly oscillatory characteristics. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. We obtain the convergence of the solutions, and a macroscopic model of the problem is constructed using the notion of two‐scale convergence combined with the dilatation technique. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号