首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.  相似文献   

2.
In this study, the static response is presented for a simply supported functionally graded rectangular plate subjected to a transverse uniform load. The generalized shear deformation theory obtained by the author in other recent papers is used. This theory is simplified by enforcing traction-free boundary conditions at the plate faces. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The equilibrium equations of a functionally graded plate are given based on a generalized shear deformation plate theory. The numerical illustrations concern bending response of functionally graded rectangular plates with two constituent materials. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, and volume fraction distributions are studied. The results are verified with the known results in the literature.  相似文献   

3.
对轴对称正交各向异性功能梯度层合圆板稳态热传导问题进行精确分析.假设材料热传导率沿板厚方向按指数函数形式梯度分布,从正交各向异性功能梯度圆板稳态热传导的基本方程出发,利用分离变量法,获得了在上、下表面作用任意热分布情况下的精确解.通过数值算例的分析,指出材料性质的梯度变化、板厚边界条件等分析了对温度场分布的影响.所获得的精确结果,可以作为评价其它近似方法的标准解答.  相似文献   

4.
Artur Wirowski 《PAMM》2009,9(1):261-262
Subject of the consideration is thin annular plate made of a two-phase functionally graded composte. The plate has periodically inhomogeneous microstructure slowly varying in space: the λ-periodic structure along circular coordinate, but smoothly graded apparent (averaged) properties in the perpendicular, radial direction. The aim of the contribution is to derive and apply a deterministic macroscopic model describing the free vibrations of this plate. Modeling procedure is based on tolerance averaging technique. We received, equations system with smooth coefficients. We made numerical solution of this problem, using finite difference method, and analyze influence of material proportion and microstructure size on first frequency of free vibrations. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this article, an analytical approach for buckling analysis of thick functionally graded rectangular plates is presented. The equilibrium and stability equations are derived according to the higher-order shear deformation plate theory. Introducing an analytical method, the coupled governing stability equations of functionally graded plate are converted into two uncoupled partial differential equations in terms of transverse displacement and a new function, called boundary layer function. Using Levy-type solution these equations are solved for the functionally graded rectangular plate with two opposite edges simply supported under different types of loading conditions. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. Furthermore, the effects of power of functionally graded material, plate thickness, aspect ratio, loading types and boundary conditions on the critical buckling load of the functionally graded rectangular plate are studied and discussed in details. The critical buckling loads of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be used as benchmark.  相似文献   

6.
The Neumann series method has been used for the first time to solve the boundary value problem of free axisymmetric and nonaxisymmetric vibrations of continuous and discrete-continuous functionally graded circular plate on the basis of the classical plate theory. The equation of motion and the general solution for a functionally graded circular plate with a very complex system of a discrete elements attached, such as concentric ring masses, elastic supports, rotational springs, and damping elements are presented for the first time. The particular continuous solutions to the defined differential equations are obtained as the Neumann power series rapidly, absolutely, and uniformly convergent to the exact eigenfrequencies for any physically justified values of the plate's parameters on the basis of the properties of the obtained closed-form kernels of the Volterra integral equations. The multiparametric nonlinear characteristic equations for plate with classical and nonclassical boundary conditions are defined and numerically solved to obtain the full spectrum of eigenfrequencies in a simple way. The effects of the position and stiffness of ring supports and of singularities as the radii of supports shrink to the center of the plate on the dimensionless eigenfrequencies of homogeneous and functionally graded circular plate with sliding support and elastic constraints are comprehensively studied and presented for the first time. The accuracy of the proposed low-computational-cost method is demonstrated by comparison of the numerical results with those available in the literature.  相似文献   

7.
The static response of simply supported functionally graded plates (FGP) subjected to a transverse uniform load (UL) or a sinusoidally distributed load (SL) and resting on an elastic foundation is examined by using a new hyperbolic displacement model. The present theory exactly satisfies the stress boundary conditions on the top and bottom surfaces of the plate. No transverse shear correction factors are needed, because a correct representation of the transverse shear strain is given. The material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. The foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second parameter is zero. The equilibrium equations of a functionally graded plate are given based on the hyperbolic shear deformation theory of plates presented. The effects of stiffness and gradient index of the foundation on the mechanical responses of the plates are discussed. It is established that the elastic foundations significantly affect the mechanical behavior of thick functionally graded plates. The numerical results presented in the paper can serve as benchmarks for future analyses of thick functionally graded plates on elastic foundations.  相似文献   

8.
In this paper, the wave propagation and transient response of an infinite functionally graded plate under a point impact load in thermal environments are studied. The thermal effects and temperature-dependent material properties are taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varies in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Considering the effects of transverse shear deformation and rotary inertia, the governing equations of the wave propagation in the functionally graded plate are derived from Hamilton’s principle. The analytic dispersion relation of the functionally graded plate is obtained by means of integral transforms and a complete discussion of dispersion for the functionally graded plate is given. Using the dispersion relation and integral transforms, exact integral solutions of the functionally graded plate under a point impact load in thermal environments are obtained. The influences of the volume fraction distributions and temperature field on the wave propagation and transient response of functionally graded plates are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and provide a theoretical basis for engineering applications.  相似文献   

9.
Nonlinear bending analysis is first presented for functionally graded elliptical plates resting on two-parameter elastic foundations, and investigations on FGM elliptical plates with immovable simply supported edge are also new in literature. Material properties are assumed to be temperature-dependent and graded in the thickness direction. The governing equations of a functionally graded plate are based on Reddy’s high-order shear deformation plate theory that includes thermal effects. Ritz method is employed to determine the central deflection-load and bending moment-load curves, the validity can be confirmed by comparison with related researchers’ results, and it is worth noting that the forms of approximate solutions are well-chosen in consideration of both simplicity and accuracy. Influences played by different supported boundaries, thermal environmental conditions, foundation stiffness, ratio of major to minor axis and volume fraction index are discussed in detail.  相似文献   

10.
Dynamic analysis of multi-directional functionally graded annular plates is achieved in this paper using a semi-analytical numerical method entitled the state space-based differential quadrature method. Based on the three-dimensional elastic theory and assuming the material properties having an exponent-law variation along the thickness, radial direction or both directions, the frequency equations of free vibration of multi-directional functionally graded annular plates are derived under various boundary conditions. Numerical examples are presented to validate the approach and the superiority of this method is also demonstrated. Then free vibration of functionally graded annular plates is studied for different variations of material properties along the thickness, radial direction and both directions, respectively. And the influences of the material property graded variations on the dynamic behavior are also investigated. The multi-directional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material.  相似文献   

11.
An analysis of two collinear antiplane cracks in inhomogeneous (functionally graded) anisotropic magnetoelectroelastic materials is presented. In designing components involving functionally graded materials, an important aspect of the problem is the fracture failure. The problem is formulated for transversely isotropic functionally graded magnetoelectroelastic materials. An integral transform is employed to reduce the problem to a singular integral equation that can be solved.  相似文献   

12.
Based on the general linear elasticity relations, an axisymmetric problem on the steady-state oscillations of a functionally graded hollow cylinder is formulated. The Lamé parameters are considered variable in radial coordinate. Oscillations are caused by the distributed load applied to the outer part of the cylinder boundary. Using the variable separation method, the direct problem on determining the radial and longitudinal components of the displacement field is investigated. The influence of the laws of variation for the Lamé parameters on acoustic characteristics is analysed. The inverse coefficient problem on the identification of the variable Lamé parameters from the data on the amplitude-frequency characteristic is stated. Based on the weak formulation of the problem for an elastic inhomogeneous body, a general linearised relation for the desired and given characteristics is obtained. A system of the Fredholm integral equations of the first kind is formulated with respect to two unknown corrections to the restored laws of the Lamé parameters change. The solution is built by means of an iterative process. A reconstruction of various laws of changing the Lamé parameters is carried out. The accuracy of the presented algorithm is estimated, and recommendations for the most efficient implementation of the reconstruction procedure are proposed.  相似文献   

13.
在推广后的England-Spencer功能梯度板理论基础上,研究了功能梯度板在不同荷载作用下的柱面弯曲问题.采用该理论中的位移展开公式,并且材料参数沿板厚方向可以任意连续变化,并将材料由各向同性推广到正交各向异性.假设板在y方向无限长,最终建立了一个从弹性力学理论出发的正交各向异性功能梯度板在横向分布荷载作用下柱面弯曲问题的板理论.通过算例分析,讨论了边界条件、材料梯度及板厚跨比等因素对功能梯度板静力响应的影响.  相似文献   

14.
A type of two-dimensional tessellated piezoelectric phononic crystal is theoretically studied in this paper, formed by homogeneous piezoelectric and inhomogeneous functionally graded rectangular columns. Firstly, the propagation properties of in-plane and anti-plane Bloch waves in each piezoelectric rectangular column are systematically investigated. Furthermore, the total transfer matrices of Bloch waves are obtained based on transfer matrices of homogeneous piezoelectric and inhomogeneous functionally graded rectangular columns. Finally, the Bloch theorem is used to obtain the dispersion relations of in-plane and anti-plane Bloch waves. The influences of non-dimensional geometrical parameters and gradient profile functions on the dispersion relations are discussed based on the graphically numerical results. Under a special value of modal parameter, the dispersion surfaces and curves of in-plane Bloch waves approximatively have plane and axis symmetries respectively, and an approximate total band-gap of anti-plane Bloch waves arise. The theoretical models and numerical discussions will provide a direct guidance of multi-material 3D printing for inhomogeneous periodic structures with dispersion and band-gaps properties.  相似文献   

15.
Free vibration and static analysis of functionally graded material (FGM) plates are studied using higher order shear deformation theory with a special modification in the transverse displacement in conjunction with finite element models. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. The fundamental equations for FGM plates are derived using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. Results have been obtained by employing a continuous isoparametric Lagrangian finite element with 13 degrees of freedom per node. Convergence tests and comparison studies have been carried out to demonstrate the efficiency of the present model. Numerical results for different thickness ratios, aspect ratios and volume fraction index with different boundary conditions have been presented. It is observed that the natural frequency parameter increases for plate aspect ratio, lower volume fraction index n and smaller thickness ratios. It is also observed that the effect of thickness ratio on the frequency of a plate is independent of the volume fraction index. For a given thickness ratio non-dimensional deflection increases as the volume fraction index increases. It is concluded that the gradient in the material properties plays a vital role in determining the response of the FGM plates.  相似文献   

16.
面内功能梯度三角形板等几何面内振动分析   总被引:1,自引:1,他引:0  
基于平面应变理论,利用等几何有限元方法分析了弹性边界条件下面内功能梯度三角形板的面内振动特性.板的材料属性沿厚度方向呈均匀分布,而在面内方向呈任意指数梯度变化.采用非均匀有理B样条(NURBS)基函数对三角形结构进行等几何建模和位移描述,实现了三角形板几何设计和振动分析的无缝衔接.在三角形板边界上引入虚拟弹簧约束并通过调节虚拟弹簧刚度,实现任意边界条件的施加.通过不同的单元细化方案和对比算例,验证了等几何方法的灵活性、准确性和快速收敛性.系统研究了边界条件、材料属性和几何参数对三角形板振动特性的影响.同时给出了弹性边界条件下面内功能梯度三角形板的振动特性解,具有重要参考价值.  相似文献   

17.
England (2006) [13] proposed a novel method to study the bending of isotropic functionally graded plates subject to transverse biharmonic loads. His method is extended here to functionally graded plates with materials characterizing transverse isotropy. Using the complex variable method, the governing equations of three plate displacements appearing in the expansions of displacement field are formulated based on the three-dimensional theory of elasticity for a transverse load satisfying the biharmonic equation. The solution may be expressed in terms of four analytic functions of the complex variable, in which the unknown constants can be determined from the boundary conditions similar to that in the classical plate theory. The elasticity solutions of an FGM rectangular plate with opposite edges simply supported under 12 types of biharmonic polynomial loads are derived as appropriate sums of the general and particular solutions of the governing equations. A comparison of the present results for a uniform load with existing solutions is made and good agreement is observed. The influence of boundary conditions, material inhomogeneity, and thickness to length ratio on the plate deflection and stresses for the load x2yq are studied numerically.  相似文献   

18.
The main objective of this research work is to present analytical solutions for free vibration analysis of moderately thick rectangular plates, which are composed of functionally graded materials (FGMs) and supported by either Winkler or Pasternak elastic foundations. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. In order to capture fundamental frequencies of the functionally graded (FG) rectangular plates resting on elastic foundation, the analysis procedure is based on the first-order shear deformation plate theory (FSDT) to derive and solve exactly the equations of motion. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. First, a new formula for the shear correction factors, used in the Mindlin plate theory, is obtained for FG plates. Then the excellent accuracy of the present analytical solutions is confirmed by making some comparisons of the results with those available in literature. The effect of foundation stiffness parameters on the free vibration of the FG plates, constrained by different combinations of classical boundary conditions, is also presented for various values of aspect ratios, gradient indices, and thickness to length ratios.  相似文献   

19.
Magdalena Mierzwiczak 《PAMM》2013,13(1):451-454
A meshless numerical procedure is developed for analyzing the transient heat conduction problem in non-homogeneous functionally graded materials. In the proposed method the time derivative of temperature is approximate by the finite difference. At each time step the original nonlinear boundary value problem is transform into a hierarchy of non-homogeneous linear problem by used the homotopy analysis method. In this method a sought solution is presented by using a finite expansion in Taylor series, which consecutive elements are solutions of series linear value problems defining differential deformations. Each of linear boundary value problems with the corresponding boundary conditions is solved by using the method of fundamental solutions and radial basis functions which are used for interpolation of the inhomogeneous term. The accuracy of the obtained approximate solution is controlled by the number of components of the Taylor series, while the convergence of the process is monitored by an additional parameter of the method. Numerical experiments demonstrate the efficiency and accuracy of the present scheme in the solution of the heat conduction problem in nonlinear functionally graded materials. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In recent years many articles concerned with the mechanics of functionally graded plates have been published. The variation in material properties through the thickness of the plate introduces a coupling between in-plane and transverse displacements, the coupling is important in the vibration of functionally graded plates (FGPs), but none have produced an exact closed-form solution for the in-plane as well as transverse vibrations of smart circular/annular FGPs. Therefore, this paper develops an exact closed-form solution for the free vibration of piezoelectric coupled thick circular/annular FGPs subjected to different boundary conditions on the basis of the Mindlin’s first-order shear deformation theory. Through the comparison of present results with those available, the accuracy of the present method was verified. The effects of coupling between in-plane and transverse displacements on the frequency parameters are proved to be significant. It is concluded that the developed model can describe vibrational behavior of smart FGM plates more realistic. Due to the inherent features of the present solution, all findings will be a useful benchmark for evaluating other analytical and numerical methods developed by researchers in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号