首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra‐high molecular weight polyethylene (UHMWPE) fibers were modified by chromic acid. The effects of surface modification were evaluated with Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electron microscope (SEM). The results showed that both the content of O‐containing functional groups and surface roughness of modified fibers increased. The polar groups on the modified fiber surface decreased the contact angles with water and ethylene glycol, as evidenced by contact angle measurement. The tensile test results showed the strength and the elongation at break of UHMWPE fibers decreased but the modulus increased after chromic acid modification. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Ultra‐high molecular weight polyethylene (UHMWPE) was irradiated in air with high‐energy (9 MeV), pulsed electron beams to doses ranging from 2.5 to 100 Mrad and subsequently heat treated at 120°C for a time period of 120 min. Surface characterization of the target side of irradiated UHMWPE samples was carried out both before and after the heat treatment by means of attenuated total reflection Fourier‐transform infrared (FTIR/ATR) spectroscopy and microhardness measurement. The obtained results provided further evidence supporting our earlier observation (Tretinnikov, O. N.; Ogata, S.; Ikada, Y. Polymer 1998, 39, 6115) that thermal decomposition of hydroperoxides formed upon irradiation of UHMWPE with high‐energy, pulsed electron beams in air leads to surface crosslinking, and the subsequent surface hardening of the irradiated polymer. Importantly, we found that this phenomenon has the highest contribution to the surface hardness enhancement of the polymer when the radiation dose is in the range of 10–30 Mrad. In addition, we found that this irradiation and subsequent heat treatment of UHMWPE in air does not lead to formation of carbonyl‐containing products unless the radiation dose exceeds 20 Mrad. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1503–1512, 1999  相似文献   

3.
Chemical–physical properties of ultra‐high‐molecular weight polyethylene (UHMWPE) treated by direct fluorination, direct fluorination accompanied with UV irradiation, by XeF2 and by TbF4, were tested by FTIR spectroscopy, visible spectroscopy, 19F and 13C NMR, scanning electron microscopy, XRD, and EPR. Surface energy measurements were carried out. The direct fluorination of UHMWPE is a diffusion‐controlled process, but treatment with XeF2 is a kinetically controlled one. Direct fluorination and direct fluorination accompanied with UV irradiation results mainly in a formation of ? CF2? groups. On the contrary, ? CHF? groups are prevailing in UHMWPE treated with XeF2 and TbF4. Surface texture of UHMWPE treated with XeF2 and with F2 is quite different. Direct fluorination results in a higher polarity of the polymer surface when compared with treatment with XeF2. For the case of direct fluorination, both long‐lived peroxy and fluoroalkylradicals are formed. For the case of treatment with XeF2, only fluoroalkylradicals were detected. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 49:3559–3573, 2011  相似文献   

4.
Polyethylene based composites are attractive materials for advanced circuit board applications because of their unique combination of properties: low dielectric constant and loss factor, light weight, high flexural modulus and low thermal expansion coefficient controlled in all spatial directions. This investigation describes a process to consolidate chopped fibers of ultra‐high molecular weight polyethylene concurrently with its bonding to a copper foil. Bonding is affected by a thin sheet of low‐density polyethylene, incorporating a crosslinking agent with a concentration gradient across the sheets thickness. In this single step process, the composite material is formed and bonded to the metal foil, achieving good adhesion without the use of extraneous glue. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The drawing behavior of the ultra‐high molecular weight polyethylene (UHMW‐PE) melts has been studied by comparing the stress/strain curves for two types of samples as polymerized using conventional Ziegler and newer metallocene catalyst systems. Two UHMW‐PE samples, having the same viscosity average molecular weight of 3.3 × 106, but different molecular weight distribution, have been drawn from melt at special conditions. The sample films for drawing were prepared by compression molding of reactor powders at 180°C in the melt. Differences in the structural changes during drawing and resultant properties, ascribable to their broad or narrow molecular weight distribution, were estimated from tensile tests, SEM observations, X‐ray measurements and thermal analyses. The metallocene‐catalyzed sample having narrower molecular weight distribution, could be effectively drawn from the melt up to a maximum draw ratio (DR) of 20, significantly lower than that obtained for the Ziegler‐catalyzed sample, ∼ 50. The stress/strain curves on drawing were remarkably influenced by draw conditions, including draw temperature and rate. However, the most effective draw for both was achieved at 150°C and a strain rate of 5 min−1, independent of sample molecular weight distribution. The efficiency of drawing, as evaluated by the resultant tensile properties as a function of DR, was higher for the metallocene‐catalyzed sample having narrower molecular weight distribution. Nevertheless, the maximum achieved tensile modulus and strength for the Ziegler sample, 50–55 and 0.90 GPa, respectively, were significantly higher than those for the metallocene sample, 20 and 0.65 GPa, respectively, reflecting the markedly higher drawability for the former than the latter. The stress/strain behavior indicated that the origin of differences during drawing from the melt could be attributed to the ease of chain relaxation for the lower molecular weight chains in the melt. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1921–1930, 1999  相似文献   

6.
Structural development of ultra‐high strength polyethylene fibers via hot‐drawing processes of as‐spun gel fibers was investigated by means of transmission electron microscopy. It is found that the shish‐kebabs developed in both the as‐spun and drawn fibers can be transformed continuously into the micro‐fibril structure composed mostly of the shish structure through the hot‐drawing process. The structure transformation involves a drastic decrease in diameter of the kebab plus the shish but almost no change in the shish diameter. This result suggests that the chains in the kebabs are incorporated into the shishs and consumed to extend the longitudinal dimension of the shishs during the drawing process. The proposed new deformation model well explains the relationship between the fiber morphology and their mechanical properties: the tensile strength and modulus of the fibers can be determined by the number of the shish in the fiber and the macroscopic diameter of the fiber, which are apriori determined at the spinning process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1861–1872, 2010  相似文献   

7.
Structural evolution of gel‐spun ultra‐high molecular weight polyethylene fibers with high concentration solution via hot stretching process was investigated by in situ small‐angle X‐ray scattering, in situ wide‐angle X‐ray diffraction measurements, scanning electron microscopy, and differential scanning calorimetry. With the increase of stretching strain, the long period continuously increases at relative lower stretching temperature, while it first increases and then decreases rapidly at relative higher stretching temperature. The kebab thickness almost keeps constant during the whole hot‐stretching process and the kebab diameter continually decreases for all stretching temperatures. Moreover, the length of shish decreases slightly and the shish quantity increases although there is almost no change in the diameter of shish crystals during the hot stretching process. The degree of crystal orientation at different temperatures is as high as above 0.9 during the whole stretching process. These results indicate that the shish‐kebab crystals in ultra‐high molecular weight polyethylene fibers can transform continuously into the micro‐fibril structure composed mostly of shish crystals through the hot stretching process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 225–238  相似文献   

8.
The non-isothermal crystallization and melting of ultra high molecular weight polyethylene (UHMWPE) were observed by means of differential scanning calorimetry and compared with those of ordinary high-density polyethylene (HDPE). The crystallization temperature (T c ) and melting point (T m ) of UHMWPE were found to be higher thanT c andT m of HDPE, and the latent heat of crystallization (δH c ) and fusion (δH m ) of UHMWPE are smaller thanδH c andδH m of HDPE. The results were explained in terms of the theory of polymer crystallization and the structure characteristics of UHMWPE. The relationships between the parameters (T c ,T T ,δH c andδH m ) and the molecular weight (M) of UHMWPE are discussed. Processing of the experimental data led to the establishment of four expressions describing the above relationships.  相似文献   

9.
To prevent the loss of fiber strength, ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers were treated with an ultraviolet radiation technique combined with a corona‐discharge treatment. The physical and chemical changes in the fiber surface were examined with scanning electron microscopy and Fourier transform infrared/attenuated total reflectance. The gel contents of the fibers were measured by a standard device. The mechanical properties of the treated fibers and the interfacial adhesion properties of UHMWPE‐fiber‐reinforced vinyl ester resin composites were investigated with tensile testing. After 20 min or so of ultraviolet radiation based on 6‐kW corona treatment, the T‐peel strength of the treated UHMWPE‐fiber composite was one to two times greater than that of the as‐received UHMWPE‐fiber composite, whereas the tensile strength of the treated UHMWPE fibers was still up to 3.5 GPa. The integrated mechanical properties of the treated UHMWPE fibers were also optimum. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 463–472, 2004  相似文献   

10.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

11.
Five examples of unsymmetrical 1,2‐bis (arylimino) acenaphthene ( L1 – L5 ), each containing one N‐2,4‐bis (dibenzocycloheptyl)‐6‐methylphenyl group and one sterically and electronically variable N‐aryl group, have been used to prepare the N,N′‐nickel (II) halide complexes, [1‐[2,4‐{(C15H13}2–6‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2 (X = Br: Ar = 2,6‐Me2C6H3 Ni1 , 2,6‐Et2C6H3 Ni2 , 2,6‐i‐Pr2C6H3 Ni3 , 2,4,6‐Me3C6H2 Ni4 , 2,6‐Et2–4‐MeC6H2 Ni5 ) and (X = Cl: Ar = 2,6‐Me2C6H3 Ni6 , 2,6‐Et2C6H3 Ni7 , 2,6‐i‐Pr2C6H3 Ni8 , 2,4,6‐Me3C6H2 Ni9 , 2,6‐Et2–4‐MeC6H2 Ni10 ), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho‐dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et2AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06  ×  107 g PE mol?1(Ni) h?1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra‐high molecular weight material (up to 1.5  ×  106 g mol?1). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2‐bis (imino)acenaphthene‐nickel catalyst.  相似文献   

12.
An ultra high molecular weight polyethylene was irradiated with the electron beam at dose levels ranging from 100 kGY to 1 MGy. The microstructures of the irradiated samples were characterized by FTIR, gel fraction measurement, DSC, and small‐ and wide‐angle X‐ray scattering. For the mechanical properties, a static tensile test and creep experiment were also performed. The crosslinking and the crystal morphology changes were the main microstructural changes to influence the mechanical properties. It was found that 250 kGy appeared to be the optimal dose level to induce crosslinks in the amorphous area and recrystalliztion in the crystal lamellae. At doses above 250 kGy, the electron beam penetrates into the crystal domains, resulting in crosslinks in the crystal domains and reduction in the crystal size and crystallinity. The static mechanical properties (modulus, strength) and the creep resistance were enhanced by the electron beam irradiation. The stiffness rather correlated with the degree of crosslinks while the strength with the crystal morphology. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3019–3029, 2005  相似文献   

13.
A single molecular catalyst system supported on MgCl2 has been developed and combined with a simple two‐stage fed‐batch polymerization process to produce tailored bimodal polyethylene reactor blend particles of UHMWPE. By varying and controlling the process conditions in the first stage and second stage, bimodal HMWPE:UHMWPE reactor particles are obtained with independent control over the individual molar masses, the mass ratio of the HMWPE and UHMWPE components, and the reactor powder particle size. This allows multidimensional control over the individual UHMWPE reactor particle properties. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1645–1656  相似文献   

14.
We investigated the tensile strength and modulus of ultrahigh‐strength polyethylene (UHSPE) fibers obtained by using the special two‐step‐drawing process of as‐spun fiber (ASFs) which were prepared by the so‐called gel‐spinning method. We have found that the higher the ASF's spinning speed is, the higher the attainable tensile strength σf and modulus E are. For all the fibers drawn from ASFs with various spinning speed except for 120 m/min, we have found a master curve for the inverse of σf which is plotted as a function of T1/4E?1/2, where T is the linear density of the drawn fibers, in consistent with the Griffith theory: a thicker fiber obtained with a lower spinning speed exhibits lower strength, although all the AFSs possess the same value of E. This also suggests that a thicker fiber contains more defects which would lead to the Griffith‐type crack propagation breakage. Moreover, from morphological observation of ASFs under transmission electron microscopy, the ASF obtained at a relatively low spinning speed possesses a heterogeneous cross‐sectional morphology, whereas that obtained at relatively high spinning speed possesses a relatively homogenous morphology. We propose that this morphological evidence may account for the experimental findings of the behavior of the mechanical properties described above. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2639–2652, 2005  相似文献   

15.
Samples of ultra‐high molecular weight polyethylene, in which the chain topology within the amorphous component was altered using two‐stage processing, including crystallization at high pressure in the first step, were produced and their deformation behavior in the plane‐strain compression was studied. Deformation and recovery experiments demonstrated that the state of the molecular network governed by entanglement density is one of the primary parameters controlling the response of the material on the imposed strain, especially at moderate and high strains. Any change in the concentration of entanglements markedly influences the shape of the true stress–true strain curve. The strain hardening modulus decreases while the onset of strain hardening increases with a decrease of the entanglement density within the amorphous component. Density of entanglements also influences the amount of rubber‐like recoverable deformation and permanent plastic flow. In material of the reduced concentration of entanglements permanent flow appears easier and sets in earlier than in the material with a higher entanglement density, becoming a favorable deformation mechanism at moderate strains. As a result, strong strain hardening is postponed to higher strain when compared with the samples of equilibrium entanglement density. In the samples of an increased entanglement density the molecular network becomes stiffer, with a reduced ability of strain induced disentangling of chains. Consequently, there is a less permanent flow and strain hardening begins earlier than in the reference material of an unaltered chain topology. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 276–285, 2010  相似文献   

16.
The applicability of latex particle supports for non‐Cp type metallocene catalysts for ethylene polymerization is presented. Polystyrene latex particles were prepared by miniemulsion polymerization and functionalized with poly(ethyleneoxide)chains and pyridyl groups on the surface. These latex particles were chosen to demonstrate that a support with nucleophilic substituents on the surface can act as a carrier for a (phenoxy‐imine) titanium complex (titanium FI‐catalyst) to produce ultrahigh molecular weight polyethylene (UHMWPE). The composition of the support, the concentration of pyridyl groups on the surface, and the crosslinking of the support were optimized to provide a system where the FI‐catalyst resulted in the formation of polyethylene with a Mw of more than 6,000,000 and a relatively narrow molecular weight distribution of 3.0 ± 0.5. High activities for long polymerization times greater than 6 h resulted in a catalyst system exhibiting productivities of up to 15,000 g PE/g cat. or 7,000,000 g PE/g Ti. The resulting polymer properties showed that nucleophilic groups on the latex particle support did not negatively impact the catalyst by blocking the active site but instead created a stable environment for the titanium catalyst. In particular, pyridyl groups on the surface of the latex particle stabilized the catalyst system probably by trapping trimethylaluminium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3103–3113, 2006  相似文献   

17.
The electrospinning method has been employed to fabricate ultrafine nanofibers of ultrahigh‐molecular‐weight polyethylene for the first time with a mixture of solvents of different dielectric constants and conductivities. The possibility of producing highly oriented nanofibers from ultrahigh‐molecular‐weight polymers suggests new ways of fabricating ultrastrong, porous, and single‐component nanocomposite fibers with improved properties. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 766–773, 2007  相似文献   

18.
In this paper, the blend fibers of ultrahigh molecular weight polyethylene (UHMWPE) and high-density polyethylene (HDPE) were prepared by solution blending and gel spinning process. The uniformity of the blend fibers has been confirmed by rheological data and thermodynamic unimodal curve. They were further characterized by single fiber strength test, scanning electron microscopy, wide-angle X-ray diffraction, small-angle X-ray scattering, and so forth, to explore the structural evolution mechanism with the change of UHMWPE content. The results showed that when the molar content of UHMWPE was only 2.9 mol%, entanglement appeared in the structure of shish-kebab, and when the proportion reached 20 mol%, an interlocking structure could be observed. With the increase of UHMWPE content, kebab began to be networked, and when the content reached 33 mol%, kebab's orientation reached its peak. After that, the interlocking network structure gradually improved. When the content reached 50 mol%, the shish's orientation reached saturation, and the shish-kebab network became perfect. In addition, with the increase of UHMWPE content, stress-induced recrystallization occurred on the wafer, some kebab would be converted into shish crystals, and when the content exceeded 50 mol%, the microfibers began to merge, and the wafer became denser, but still had entanglements. Our work has proposed a quantitative explanation for the evolution of hierarchical crystal structure of HDPE/UHMWPE blend fibers.  相似文献   

19.
Ultra‐high specific surface cellulose fibers with an average diameter of 500 nm were generated from electrospinning and alkaline hydrolysis of cellulose acetate and used as porous supports for enzyme immobilization. The cellulose fiber surfaces were reacted with polyethylene glycol (PEG) diacylchloride to simultaneously add amphiphilic spacers and reactive end groups for coupling with a lipase enzyme. The quantity of reactive carboxylic acid on the fiber surfaces could be readily controlled by COCl/OH molar ratios and PEG lengths. The highest free acid (COOH) content of 1.0 mmol per gram of cellulose was obtained at 10 COCl/OH ratio with the 600‐Da PEG diacylchloride. Enzyme coupling on such PEG‐attached cellulose was optimal in the presence of a water‐soluble carbodiimide [1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC)] at a very low EDC/COOH molar ratio of 0.2 under acidic condition and at ambient temperature. Whereas the free lipase retained only 25% of its original activity, the fiber‐bound lipase possessed much superior retention of catalytic activity after exposure to cyclohexane (81%) and toluene (62%) and hexane (34%). The fiber‐bound lipase also exhibited significantly higher catalytic activity at elevated temperatures than the free form, that is, 10 times at 70 °C. The ultra‐fine, fibrous, and porous structures were retained throughout alkaline hydrolysis, activation, coupling, and activity assays. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4289–4299, 2004  相似文献   

20.
Through immobilization of two iron‐based complexes, [((2,6‐MePh)N = C(Me))2C5H3N]FeCl2 ( 1 ) and [((2,6‐iPrPh)N = C(Me))2C5H3N]FeCl2 ( 2 ), on SiO2 pretreated with tetraethylaluminoxane (TEAO), two supported iron‐based catalysts, 1 /TEAO/SiO2 ( 3 ) and 2 /TEAO/SiO2 ( 4 ), were prepared. These two supported catalysts 3 and 4 could be used to catalyze ethylene polymerization with moderate polymerization activity and prepare linear high‐density polyethylene with bimodal molecular weight distribution (MWD). It was demonstrated that immobilization of catalyst could significantly improve molecular weight (MW) of high‐MW fraction of the resultant polyethylene, as well as maintain bimodal MWD of polyethylene produced by the corresponding homogeneous catalysts. Such bimodal MWD of polyethylene produced by supported iron‐based catalysts could be well tailored by varying polymerization conditions, such as ethylene pressure and molar ratio of Al to Fe. It has been proven that TEAO is an efficient activator for both homogeneous and heterogeneous iron‐based catalysts for producing polyethylene with bimodal MWD. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5662–5669, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号