首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this article, we analyze the Petrov‐Galerkin immersed finite element method (PG‐IFEM) when applied to one‐dimensional elliptic interface problems. In the PG‐IFEM (T. Hou, X. Wu and Y. Zhang, Commun. Math. Sci., 2 (2004), 185‐205, and S. Hou and X. Liu, J. Comput. Phys., 202 (2005), 411‐445), the classic immersed finite element (IFE) space was taken as the trial space while the conforming linear finite element space was taken as the test space. We first prove the inf‐sup condition of the PG‐IFEM and then show the optimal error estimate in the energy norm. We also show the optimal estimate of the condition number of the stiffness matrix. The results are extended to two dimensional problems in a special case.  相似文献   

2.
    
We propose a partially penalized P1/CR immersed finite element (IFE) method with midpoint values on edges as degrees of freedom for CR elements to solve planar elasticity interface problems. Optimal approximation errors in L2 norm and H1 semi‐norm are obtained for the P1/CR IFE spaces. Moreover, by adding some stabilization terms on the edges of interface elements, we derive an optimal error estimate for the P1/CR IFE method. Our method differs from the method with average values on edges as degrees of freedom for P1/CR elements in Qin et al.'s study, where no approximation theoretical result was presented. Numerical examples confirm our theoretical results.  相似文献   

3.
A numerical algorithm is described for solving the generalized eigenvalue problem arising in the study of the spectrum of a preconditioned operator in the pressure equation derived from a Stokes interface problem. The algorithm is implemented for two finite element schemes. It is tested for a problem with an analytical solution and is applied to spectrum computations in the case of a piecewise constant viscosity. A large number of numerical experiments are analyzed, and recommendations are given for solving the Stokes interface problem in practice.  相似文献   

4.
    
We construct and analyze a group of immersed finite element (IFE) spaces formed by linear, bilinear, and rotated Q1 polynomials for solving planar elasticity equation involving interface. The shape functions in these IFE spaces are constructed through a group of approximate jump conditions such that the unisolvence of the bilinear and rotated Q1 IFE shape functions are always guaranteed regardless of the Lamé parameters and the interface location. The boundedness property and a group of identities of the proposed IFE shape functions are established. A multi‐point Taylor expansion is utilized to show the optimal approximation capabilities for the proposed IFE spaces through the Lagrange type interpolation operators.  相似文献   

5.
In this article, we derive the sharp long‐time stability and error estimates of finite element approximations for parabolic integro‐differential equations. First, the exponential decay of the solution as t → ∞ is studied, and then the semidiscrete and fully discrete approximations are considered using the Ritz‐Volterra projection. Other related problems are studied as well. The main feature of our analysis is that the results are valid for both smooth and nonsmooth (weakly singular) kernels. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 333–354, 1999  相似文献   

6.
    
This article presents three Crank‐Nicolson‐type immersed finite element (IFE) methods for solving parabolic equations whose diffusion coefficient is discontinuous across a time dependent interface. These methods can use a fixed mesh because IFEs can handle interface jump conditions without requiring the mesh to be aligned with the interface. These methods will be compared analytically in the sense of accuracy and computational cost. Numerical examples are provided to demonstrate features of these three IFE methods. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

7.
    
In this article, we propose simplified immersed interface methods for elliptic partial/ordinary differential equations with discontinuous coefficients across interfaces that are few isolated points in 1D, and straight lines in 2D. For one‐dimensional problems or two‐dimensional problems with circular interfaces, we propose a conservative second‐order finite difference scheme whose coefficient matrix is symmetric and definite. For two‐dimensional problems with straight interfaces, we first propose a conservative first‐order finite difference scheme, then use the Richardson extrapolation technique to get a second‐order method. In both cases, the finite difference coefficients are almost the same as those for regular problems. Error analysis is given along with numerical example. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 188–203, 2012  相似文献   

8.
We consider a material that occupies a convex polygonal bounded domain Ω ⊂ ℝn, with regular boundary Γ = Γ1 ∪ Γ2 (with Γ ∩ Γ = ∅︁) with meas (Γ1) = |Γ1| > 0 and |Γ2| > 0. We assume, without loss of generality, that the melting temperature is 0°C. We consider the following steady‐state heat conduction problem in Ω: with α, q, B = Const > 0, and q and α represent the heat flux on Γ2 and the heat transfer coefficient on Γ1, respectively. In a previous article (Tabacman‐ Tarzia, J Diff Eq 77 (1989), 16– 37) sufficient and/or necessary conditions on data α, q, B, Ω, Γ1, Γ2 to obtain a temperature u of nonconstant sign in Ω (that is, a multidimensional steady‐state, two‐phase, Stefan problem) were studied. In this article, we consider a regular triangulation by finite element method of the domain Ω with Lagrange triangles of the type 1, with h > 0 the parameter of the discretization. We study sufficient (and/or necessary) conditions on data α, q, B, Ω, Γ1, and Γ2 to obtain a change of phase (steady‐state, two‐phase, discretized Stefan problem) in corresponding discretized domain, that is, a discrete temperature of nonconstant sign in Ω. Moreover, error bounds as a function of the parameter h, are also obtained. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq. 15: 355–369, 1999  相似文献   

9.
10.
    
We consider the time‐dependent magnetic induction model as a step towards the resistive magnetohydrodynamics model in incompressible media. Conforming nodal‐based finite element approximations of the induction model with inf‐sup stable finite elements for the magnetic field and the magnetic pseudo‐pressure are investigated. Based on a residual‐based stabilization technique proposed by Badia and Codina, SIAM J. Numer. Anal. 50 (2012), pp. 398–417, we consider a stabilized nodal‐based finite element method for the numerical solution. Error estimates are given for the semi‐discrete model in space. Finally, we present some examples, for example, for the magnetic flux expulsion problem, Shercliff's test case and singular solutions of the Maxwell problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
    
In this article, we develop a partially penalty immersed interface finite element (PIFE) method for a kind of anisotropy diffusion models governed by the elliptic interface problems with discontinuous tensor‐coefficients. This method is based on linear immersed interface finite elements (IIFE) and applies the discontinuous Galerkin formulation around the interface. We add two penalty terms to the general IIFE formulation along the sides intersected with the interface. The flux jump condition is weakly enforced on the smooth interface. By proving that the piecewise linear function on an interface element is uniquely determined by its values at the three vertices under some conditions, we construct the finite element spaces. Therefore, a PIFE procedure is proposed, which is based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. Then we prove the consistency and the solvability of the procedure. Theoretical analysis and numerical experiments show that the PIFE solution possesses optimal‐order error estimates in the energy norm and norm.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1984–2028, 2014  相似文献   

12.
对差分法时程积分的反思   总被引:10,自引:1,他引:9       下载免费PDF全文
以往偏微分方程时间步的数值积分主要由有限差分法来执行,然而当时间步长较大时会引起数值不稳定性。本文给出的单点精细积分法导出的显式积分格式可证明是无条件稳定的。就扩散方程与对流─扩散方程作出了本文方法与差分法导出的格式之间的对比。数值例题也表明了单点积分法的优越性。  相似文献   

13.
We give some theoretical considerations on the the flux-free finite element method for the generalized Stokes interface problem arising from the immiscible two-fluid flow problems. In the flux-free finite element method, the flux constraint is posed as another Lagrange multiplier to keep the zero-flux on the interface. As a result, the mass of each fluid is expected to be preserved at every time step. We first study the effect of discontinuous coefficients (viscosity and density) on the error of the standard finite element approximations very carefully. Then, the analysis is extended to the flux-free finite element method.  相似文献   

14.
    
This survey enfolds rigorous analysis of the defect‐correction finite element (FE) method for the time‐dependent conduction‐convection problem which based on the Crank‐Nicolson scheme. The method consists of two steps: solve a nonlinear problem with an added artificial viscosity term on a FE grid and correct the solutions on the same grid using a linearized defect‐correction technique. The stability and optimal error estimate of the fully discrete scheme are derived. As a consequence, the effectiveness of the method to deal with high Reynolds number is illustrated in several numerical experiments. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 681–703, 2017  相似文献   

15.
该文研究了渐近均质法在单相气体渗流理论中的应用,开发了气体在孔隙尺度下流动的数学模型和数值方法. 基于渐近均质法,建立了周期单元上描述周期性多孔结构孔隙尺度下单相气体流动的局部问题. 讨论了局部问题的特殊数学性质和物理意义. 利用一种基于对称性和反对称性扩展的简化方法,提出了求解局部问题的最小二乘有限元方法,克服了由于平均算子和周期性边界条件引起的数值困难. 局部问题的求解能够获得单孔内速度和压力的精确分布,并且在仅知道孔隙几何形状的情况下评估多孔介质的渗透性. 在局部问题的基础上,通过理论分析获得了微管中Poiseuille流动的解析解,验证了所提出的数学模型和数值算法. 最后,考虑了一种三维周期性多孔结构,获得了单孔中气体局部流动的数值结果和多孔介质的渗透系数.  相似文献   

16.
We present a new finite element method, called ϕ-FEM, to solve numerically elliptic partial differential equations with natural (Neumann or Robin) boundary conditions using simple computational grids, not fitted to the boundary of the physical domain. The boundary data are taken into account using a level-set function, which is a popular tool to deal with complicated or evolving domains. Our approach belongs to the family of fictitious domain methods (or immersed boundary methods) and is close to recent methods of CutFEM/XFEM type. Contrary to the latter, ϕ-FEM does not need any nonstandard numerical integration on cut mesh elements or on the actual boundary, while assuring the optimal convergence orders with finite elements of any degree and providing reasonably well conditioned discrete problems. In the first version of ϕ-FEM, only essential (Dirichlet) boundary conditions was considered. Here, to deal with natural boundary conditions, we introduce the gradient of the primary solution as an auxiliary variable. This is done only on the mesh cells cut by the boundary, so that the size of the numerical system is only slightly increased. We prove theoretically the optimal convergence of our scheme and a bound on the discrete problem conditioning, independent of the mesh cuts. The numerical experiments confirm these results.  相似文献   

17.
This paper discusses a class of quadratic immersed finite element (IFE) spaces developed for solving second order elliptic interface problems. Unlike the linear IFE basis functions, the quadratic IFE local nodal basis functions cannot be uniquely defined by nodal values and interface jump conditions. Three types of one dimensional quadratic IFE basis functions are presented together with their extensions for forming the two dimensional IFE spaces based on rectangular partitions. Approximation capabilities of these IFE spaces are discussed. Finite element solutions based on these IFE for representative interface problems are presented to further illustrate capabilities of these IFE spaces. Dedicated to the 60th birthday of Charles A. Micchelli Mathematics subject classifications (2000) 65N15, 65N30, 65N50, 65Z05. Yanping Lin: Supported by NSERC. Weiwei Sun: This work was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (project CityU 1141/01P).  相似文献   

18.
    
In this article, we develop several first order fully discrete Galerkin finite element schemes for the Oldroyd model and establish the corresponding stability results for these numerical schemes with smooth and nonsmooth initial data. The stable mixed finite element method is used to the spatial discretization, and the temporal treatments of the spatial discrete Oldroyd model include the first order implicit, semi‐implicit, implicit/explicit, and explicit schemes. The ‐stability results of the different numerical schemes are provided, where the first‐order implicit and semi‐implicit schemes are the ‐unconditional stable, the implicit/explicit scheme is the ‐almost unconditional stable, and the first order explicit scheme is the ‐conditional stable. Finally, some numerical investigations of the ‐stability results of the considered numerical schemes for the Oldroyd model are provided to verify the established theoretical findings.  相似文献   

19.
    
In this work, we consider a combined finite element method for fully coupled nonlinear thermo-poroelastic model problems. The mixed finite element (MFE)method is used for the pressure, the characteristics finite element (CFE) method isused for the temperature, and the Galerkin finite element (GFE) method is used forthe elastic displacement. The semi-discrete and fully discrete finite element schemesare established and the stability of this method is presented. We derive error estimates for the pressure, temperature and displacement. Several numerical examplesare presented to confirm the accuracy of the method.  相似文献   

20.
For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the asymptotic error expansions of bilinear finite element have the accuracy of O(h3)for u∈H3.Based on the obtained asymptotic error expansions for linear finite elements,extrapolation cascadic multigrid method(EXCMG)can be used to solve Robin problems effectively.Furthermore,by virtue of Richardson not only the accuracy of the approximation is improved,but also a posteriori error estimation is obtained.Finally,some numerical experiments that confirm the theoretical analysis are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号