首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel activated carbon spheres (ACS)@SnO2@NiO hierarchical hybrid architecture was first synthesized and applied for enhancing the flame retardancy of epoxy (EP) resin via a cooperative effect. Herein, using activated carbon microspheres as the template, SnO2 and NiO nanospheres were successively anchored to it by a sedimentation‐calcination strategy. The well‐designed ACS@SnO2@NiO significantly enhanced the flame retardancy for consistency of EP composites, as demonstrated by thermogravimetric and cone calorimeter experiments. For instance, the incorporation of 2 wt% ACS@SnO2@NiO decreased by 15.5% maximum in the total smoke production, accompanying the higher graphitized char layer. In addition, the synergetic mechanism of flame retardancy between ACS@SnO2@NiO and aluminum hypophosphite (AHP) was investigated. The obtained sample satisfied the UL‐94 V‐0 rating with a 5.0 wt% addition of AHP and ACS@SnO2@NiO (the ratio of the mass fraction of AHP to ACS@SnO2@NiO is 4.5:0.5). Notably, the incorporation of AHP and ACS@SnO2@NiO resulted in a significant decrease in the fire hazard properties of EP resin; for instance, 4.5AHP‐0.5ACS@SnO2@NiO/EP resulted in a maximum decrease of 32.4% in the total smoke production as compared with that of pure EP resin. It should be noted that the improved flame‐retardant performance for the EP composites is primarily attributed to the synergistic effect of ACS@SnO2@NiO and AHP in promoting the formation of residual char in the condensed phase.  相似文献   

2.
The synergistic effect of four different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), boron silicon containing preceramic oligomer (BSi) and lanthanum borate (LaB), were studied to improve the flame retardancy of a polypropylene (PP) intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated by limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis (TGA) and cone calorimeter tests. The addition of 20 wt% intumescent flame retardant (IFR) improves the flame retardancy by increasing the char formation. According to LOI and UL-94 test, boron compounds show their highest synergistic effect at 1 wt% loading. BPO4 containing composite shows the highest LOI (30), lowest maximum heat release rate (HRR) and lowest total heat release rate (THR) value. Although the char yield increases as the amount of boron compounds increases, the flame retarding effect decreases. Cone calorimeter and TGA data indicate that the boron compounds are likely to show their synergistic effect by reinforcing the integrity of char which improves its barrier effect rather than increasing the char yield.  相似文献   

3.
In this paper, an effective flame retardant consisting of hierarchical magnesium hydrate (MH) nanosheets doped with molybdenum trioxide nanoparticles (MO@MH) was successfully synthesized via a hydrothermal process. Then, MO@MH, MH, and MH/MO were respectively incorporated into flexible polyvinyl chloride (fPVC) to prepare a series of composites via melt blending. The results of limiting oxygen index (LOI), UL‐94, and cone calorimetry test showed that MO@MH exhibited better flame retardancy and smoke suppression than MH and MH/MO due to the synergistic effect of MO and MH, and the hierarchical structure of MO@MH. With the addition of 20 phr MO@MH, LOI value of fPVC was increased from 23.9% to 33.8% , and UL‐94 reached V0 rating. The peak heat release rate, total heat release, peak smoke production rate, and total smoke production were decreased to 143.0 kW/m2, 44.9 MJ/m2, 0.0093 m2/s and 29.4 m2, respectively. The thermogravimetric analysis results suggested that MO@MH greatly promoted the dehydrochlorination of fPVC at lower temperature, so that more compact and continuous char residues were formed. The Fourier transform infrared spectroscopy results indicated that MO@MH can prevent chain scission and oxidation of fPVC carbonaceous backbone, and as a result less smoke was released.  相似文献   

4.
The flame retardancy of a novel intumescent flame‐retardant polypropylene (IFR‐PP) system, which was composed of a charring agent (CA), ammonium polyphosphate (APP), and polypropylene (PP), could be enhanced significantly by adding a small amount (1.0 wt%) of an organic montmorillonite (O‐MMT). The synergistic flame‐retardant effect was studied systematically. The thermal stability and combustion behavior of the flame‐retarded PP were also investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). TGA results demonstrated that the onset decomposition temperatures of IFR‐PP samples, with or without O‐MMT, were higher than that of neat PP. Compared with IFR‐PP, the LOI value of IFR‐PP containing 1.0 wt% O‐MMT was increased from 30.8 to 33.0, and the UL‐94 rating was also enhanced to V‐0 from V‐1 when the total loading of flame retardant was the same. The cone calorimeter results showed that the IFR‐PP with 1.0 wt% of O‐MMT had the lowest heat release rate (HRR), total heat release (THR), total smoke production (TSP), CO production (COP), CO2 production (CO2P), and mass loss (ML) of all the studied IFR‐PP samples, with or without O‐MMT. All these results indicated that O‐MMT had a significantly synergistic effect on the flame‐retardancy of IFR‐PP at a low content of O‐MMT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The flame retardancy and thermal stability of ammonium polyphosphate/tripentaerythritol (APP/TPE) intumescent flame retarded polystyrene composites (PS/IFR) combined with organically-modified layered inorganic materials (montmorillonite clay and zirconium phosphate), nanofiber (multiwall carbon nanotubs), nanoparticle (Fe2O3) and nickel catalyst were evaluated by cone calorimetry, microscale combustion calorimetry (MCC) and thermogravimetric analysis (TGA). Cone calorimetry revealed that a small substitution of IFR by most of these fillers (≤2%) imparted substantial improvement in flammability performance. The montmorillonite clay exhibited the highest efficiency in reducing the peak heat release rate of PS/IFR composite, while zirconium phosphate modified with C21H26NClO3S exhibited a negative effect. The yield and thermal stability of the char obtained from TGA correlated well with the reduction in the peak heat release rate in the cone calorimeter. Since intumesence is a condensed-phase flame process, the MCC results showed features different from those obtained from the cone calorimeter.  相似文献   

6.
A novel ionic liquid containing phosphorus ([PCMIM]Cl) was synthesized and characterized by FTIR, 1H NMR, 13C NMR and 31P NMR. Moreover, a new intumescent flame retardant (IFR) system, which was composed of [PCMIM]Cl and ammonium polyphosphate (APP), was used to impart flame retardancy and dripping resistance to polypropylene (PP). The flammability and thermal behaviors of intumescent flame‐retarded PP (PP/IFR) composites were evaluated by limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA) and cone calorimeter test. It was found that there was an obvious synergistic effect between [PCMIM]Cl and APP. When the weight ratio of [PCMIM]Cl and APP was 1:5 and the total amount of IFR was kept at 30 wt%, LOI value of PP/IFR composite reached 31.8, and V‐0 rating was obtained. Moreover, both the peak heat release rate and the peak mass loss rate of PP/IFR composites decreased significantly relative to PP and PP/APP composite from cone calorimeter analysis. The TGA curves suggested that [PCMIM]Cl had good ability of char formation, and when combined with APP, it could greatly promote the char formation of PP/IFR composites, hence improved the flame retardancy. Additionally, the rheological behaviors and mechanical properties of PP/IFR composites were also investigated, and it was found that [PCMIM]Cl could also serve as an efficient lubricant and compatibilizer between APP and PP, endowing the materials with satisfying processability and mechanical properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)‐nanoclay‐intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis (TGA), and cone calorimeter. According to the results obtained, the addition of 20 wt% intumescent flame retardant (IFR) improved the flame retardancy by increasing the char formation. Addition of clay slightly increases the LOI value and reduces the maximum heat release rate (HRR). Addition of clay also increases the barrier effect due to intumescent char, especially in thin samples. Boron compounds show their highest synergistic effect at about 3 wt% loading. According to UL‐94 test and LOI test, 3 wt% ZnB containing composite shows the highest rating (V0) and BPO4 containing sample shows the highest LOI value (26.5). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Kaolin clay was introduced into an intumescent flame retardant (IFR) system containing ammonium polyphosphate as an acid source and pentaerythritol as a carbonization agent in order to improve the thermal stability and flame retardancy of polypropylene (PP) composite. The flame retardancy and smoke suppression was evaluated by the limiting oxygen index, vertical burning UL‐94, and cone calorimeter (CONE) tests. The limiting oxygen index value was increased from 30 to 33 at the presence of 2 phr kaolin. The peak heat release rate value decreased from 1002 kW/m2 of neat PP to 318 kW/m2 of PP/40 phr IFR and then to 222 kW/m2 of PP/38 phr IFR/2 phr kaolin. The time of the peak heat release rate was significantly prolonged after the introduction of kaolin. The morphology of char after combustion was characterized by a scanning electron microscope, and it revealed more compact char structure that was obtained at the presence of kaolin. The mechanism of kaolin on improving the retardancy and smoke suppression of PP/IFR composite was proposed on the basis of X‐ray photoelectron spectroscopy analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The effects of lanthanum oxide (La2O3) as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP) were studied, and the new IFR system mainly consisted of the charring-foaming agent (CFA) and ammonium polyphosphate (APP). The limiting oxygen index (LOI), UL-94 test, thermogravimetric analysis (TGA), cone calorimeter (CONE) and scanning electron microscopy (SEM) were used to evaluate the synergistic effects of La2O3. It was found that when IFR was fixed at 20 wt% in IFR-PP composites, only a little amount of La2O3 could enhance LOI value and pass the UL-94 V0 rating test (1.6 mm). The TGA data showed that La2O3 could enhance the thermal stability of the IFR-PP systems at high temperature and effectively increase the char residue formation. The CONE results revealed that La2O3 and IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), ignition time (IT) and so on. The morphological structures observed by SEM demonstrated that La2O3 could promote to form the homogenous and compact intumescent char layer. Thus, a suitable amount of La2O3 plays a synergistic effect in the flame retardancy and smoke suppression of IFR composites.  相似文献   

10.
In this work, 12‐tungestocobaltic acid based organic–inorganic hybrid material, [Bmim]6CoW12O40 (CoW) was synthesized and applied as a synergist in polypropylene (PP)/intumescent flame retardant (IFR) composites. The flame retardant properties were investigated by the limiting oxygen index (LOI), UL‐94 vertical burning test, thermal gravimetric analyzer (TGA), cone calorimeter and scanning electron microscopy (SEM) etc. The results showed that the PP composites with 16 wt% IFR and 1 wt% CoW achieves the UL‐94 V‐0 rating and gets a LOI value 28.0. However, only add no less than 25 wt% single IFR, can the PP composites obtain the UL‐94 V‐0 rating, which suggests that CoW has good synergistic effects on flame retardancy of PP/IFR composites. In addition, the SEM and cone calorimeter tests indicated the CoW improves the quality of char layer. The rate of char formation has been enhanced also because of the existence of CoW. It is the combination of a better char quality and a high rate of char formation promoted by CoW that results in the excellent flame retardancy of PP/IFR composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Effect of metallic oxides on flame retardancy and the thermal stability of styrene butadiene rubber (SBR) composites based on ammonium polyphosphate (APP) and pentaerythritol (PER) was studied by the limiting oxygen index (LOI), UL 94, the cone calorimeter tests, and thermogravimetry analysis (TGA), respectively. Scanning electron microscopy (SEM) and wide‐angle X‐ray diffraction (WAXD) were used to analyze the morphological structure and the component of the residue chars formed from the SBR composites accordingly. The addition of zirconium dioxide (ZrO2) at a loading of 3.4 phr could improve the UL 94 test rating of the composite to V‐0. The TGA data illustrated that the metallic oxides could enhance the thermal stability of the SBR/Intumescent flame retardant additives (IFRs) composites at high temperature and increase the residue. Cone calorimeter test gave much clear evidence that the incorporation of ZrO2 into SBR/IFRs composites resulted in the significant deduction of the heat release rate (HRR) values, and the SEM images showed that the char layers of the composites containing the metallic oxides became more compact. From the WAXD pattern, zirconium phosphate (ZrP2O7) may be formed by the reaction between ZrO2 and APP. Due to the addition of ZrO2 and the formation of ZrP2O7, the flame retardancy of the composite was improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Poly(vinyl alcohol)/melamine phosphate composites (PVA/MP) as a novel halogen‐free, flame‐retardant foam matrix were prepared through thermal processing, and then their thermal stability and flame retardancy were investigated by thermo‐gravimetric analysis, micro‐scale combustion calorimeter, cone calorimeter, vertical burning test, and limiting oxygen index (LOI) test. It was found that the thermal stability and combustion properties of the PVA/MP composites could be influenced by the addition of MP. Compared with the control PVA sample (B‐PVA), in the PVA/MP (75/25) composites, the temperature at 5% mass loss (T5%) decreased about 10°C, the residual chars at 600°C increased by nearly 27%, the temperature at the maximum peak heat release rate (TP) shifted from 292°C to 452°C, and the total heat released and the heat release capacity (HRC) decreased by 28% and 14%, respectively. Moreover, the PVA/MP composites could reach LOI value up to 35% and UL94 classification V‐0, showing good flame retardancy. At the same time, both Fourier transform infrared and X‐ray photoelectron spectroscopy spectra of the residual chars from the PVA/MP composites demonstrated that the catalytic effect of MP on the dehydration and decarboxylation reactions of PVA, and the chemical reactivity of MP during the chars‐forming reactions could be used to account for the changed thermal stability and flame retardancy of the PVA/MP composites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The goal of this work was the synthesis of novel flame-retarded polyurethane rigid foam with a high percentage of castor oil phosphate flame-retarded polyol (COFPL) derived from renewable castor oil. Rigid flame-retarded polyurethane foams (PUFs) filled with expandable graphite (EG) and diethyl phosphate (TEP) were fabricated by cast molding. Castor oil phosphate flame-retarded polyol was derived by glycerolysis castor oil (GCO), H2O2, diethyl phosphate and catalyst via a three-step synthesis. Mechanical property, morphological characterization, limiting oxygen index (LOI) and thermostability analysis of PUFs were assessed by universal tester, scanning electron microscopy (SEM), oxygen index testing apparatus, cone calorimeter and thermogravimetric analysis (TGA). It has been shown that although the content of P element is only about 3%, the fire retardant incorporated in the castor oil molecule chain increased thermal stability and LOI value of polyurethane foam can reach to 24.3% without any other flame retardant. An increase in flame retardant was accompanied by an increase in EG, TEP and the cooperation of the two. Polyurethane foams synthesized from castor oil phosphate flame-retarded polyol showed higher flame retardancy than that synthesized from GCO. The EG, in addition to the castor oil phosphate, provided excellent flame retardancy. This castor oil phosphate flame-retarded polyol with diethyl phosphate as plasticizer avoided foam destroy by EG, thus improving the mechanical properties. The flame retardancy determined with two different flame-retarded systems COFPL/EG and EG/COFPL/TEP flame-retarded systems revealed increased flame retardancy in polyurethane foams, indicating EG/COFPL or EG/COFPL/TEP systems have a synergistic effect as a common flame retardant in castor oil-based PUFs. This EG/COFPL PUF exhibited a large reduction of peak of heat release rate (PHRR) compared to EG/GCO PUF. The SEM results showed that the incorporation of COFPL and EG allowed the formation of a cohesive and dense char layer, which inhibited the transfer of heat and combustible gas and thus increased the thermal stability of PUF. The enhancement in flame retardancy will expand the application range of COFPL-based polyurethane foam materials.  相似文献   

14.
The flame‐retardant microcapsules were successfully fabricated with an aluminum hypophosphite (AHP) core. Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) were used to verify that AHP was encapsulated in the microcapsules, and thermogravimetry analysis showed that microencapsulated AHP (MAHP) possessed higher thermal stability than that of AHP. Then, a flame‐retardant and smoke suppression system for silicone foams (SiFs) was obtained through a synergistic effect of MAHP and zinc borate (2ZnO·3B2O3·3.5H2O). The mechanical properties, flame retardance, and smoke suppression of SiFs with MAHP and zinc borate were tested using the tensile test, limiting oxygen index (LOI) test, UL‐94 test, and cone calorimeter test. The mechanical properties indicated that the tensile strength and elongation at break of SiFs could evidently improve with the incorporation of MAHP. Compared with pure SiF, SiF8 with 4.5‐wt% MAHP and 1.5‐wt% zinc borate could achieve an LOI value of 30.7 vol% and an UL‐94 V‐0 rating, the time to ignition amplified almost six times, the peak heat release rate and total heat release were 51.10% and 46.00% less than that of pure SiF, respectively, the fire performance index increased nearly 13 times, and the fire growth index value was only 13.18% of pure SiF. Moreover, the partial substitution of zinc borate imparted a substantial improvement in both flame retardancy and smoke suppression. Especially, the peak smoke production rate and total smoke production of SiF8 were merely 38.46% and 38.84% of pure SiF.  相似文献   

15.

Two kinds of activated carbon spheres (ACS)-supported metal oxides, ACS-supported Fe3O4 (ACS@Fe3O4) and ACS-supported NiO (ACS@NiO), were synthesized and used as flame retardants for reducing smoke release volume and fire hazard in flexible poly(vinyl chloride) (PVC). Scanning electron microscope measurement, Fourier transform infrared spectrum, X-ray diffraction and thermogravimetric analysis (TGA) were utilized to investigate the morphology, chemical structure and stability of the flame retardants. The TGA coupled with mass spectrometry (TG-MS) results of PVC composites showed that ACS could retard the heat and oxygen transfer between gas and polymers. Under the same condition, ACS@Fe3O4 could promote the dehydrochlorination reaction of PVC in lower temperature, while the ACS@NiO could make the dehydrochlorination reaction faster. Therefore, both ACS@Fe3O4 and ACS@NiO effectively promoted the cross-linked carbonization reaction of PVC and then generated a large amount of stable char residues. Limiting oxygen index (LOI) and cone calorimeter test results of the PVC composites showed that ACS@Fe3O4 and ACS@NiO were much more efficient than ACS alone to improve the flame retardancy and smoke suppression of PVC. The incorporation of ACS@Fe3O4 and ACS@NiO increased the LOI from 24.9 to 27.4% and 26.9% and reduced the peak of heat release rate by 47.2 and 30.8%, respectively, compared with pure PVC.

  相似文献   

16.
In order to improve the flame retardant of polylactide (PLA), the synergistic effect of graphitic carbon nitride (g‐C3N4) with commercial‐available flame retardants melamine pyrophosphate (MPP) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was investigated. The PLA composites containing 5 wt% g‐C3N4 and 10 wt% DOPO had a highest limited oxygen index (LOI) value of 29.5% and reached the V‐0 rating of UL‐94 test. The cone calorimeter tests exhibited that DOPO had a better synergistic effect with g‐C3N4 than MPP to improve flame retardancy of PLA. The peak heat release rate (pHRR) and total heat release (THR) of PLA composites containing 10 wt% DOPO could be reduced by 25.2% and 23.6%, respectively, as compared with those of pure PLA. The presence of rich phosphorus element and aromatic groups in DOPO contributed to obtain continuous compact char layer and increase the graphitization level of char residues, thereby, resulting in improving the flame retardancy of PLA together with g‐C3N4. In addition, the incorporation of DOPO can serve as a plasticizer to reduce the complex viscosity, improving the processability of PLA composites.  相似文献   

17.
A novel EVA/unmodified nano-magnesium hydroxide(NMH)/silicone rubber ternary nanocomposite was prepared by using a special compound flame retardant of NMH and silicone rubber(CFR).The flammability of the ternary composite was studied by cone calorimeter test(CCT).Synergistic effect on flame retardancy was found between silicone rubber and NMH.EVA/CFR ternary nanocomposite showed the lowest peak heat release rate(PHRR)and mass loss rate (MLR)among the samples of virgin EVA,EVA composites.The synergistic flame retardancy of silicone rubber and NMH in EVA system is attributed to the enhanced char layers in the condensed phase that prevents the heat and mass transfer in the fire.  相似文献   

18.
Mechanical and flame retardant properties of ethylene vinyl acetate (EVA) copolymer/organoclay/alumina trihydrate (ATH) nanocomposites have been studied. ATH with different particle sizes, ATH1 (2.2-5.2 μm) and ATH2 (1.5-3.5 μm), and three different surface treatments, uncoated, fatty acid coated and silane coated, have been used. A synergistic effect was observed in EVA/organoclay/ATH nanocomposites with the total heat evolved (THE) and the heat release rate (HRR) lower than that of EVA/ATH composite. It was also found that mechanical and flame retardant properties are affected in different ways by the particle size and the surface treatment of ATH fillers. Improvements in tensile and flame retardant properties were observed in nanocomposites when uncoated ATH fillers and fatty acid coated ATH2 filler were used. On the other hand, silane coating on ATH1 and ATH2 improves limiting oxygen index (LOI) and leads to higher tignition and the best char stability after cone calorimeter test.  相似文献   

19.
Synergy in flame retardancy of polyurethane foams between phosphorus-based flame retardant (aluminium phosphinate) and layered silicates has been investigated. We used pristine montmorillonite as well as ammonium modified clay (commercially available) and diphosphonium modified clay, which were synthesised by the intercalation of the quaternary diphosphonium salt according to a procedure reported here. The morphology of the foams was characterised through X-ray diffraction (XRD), while thermal properties were characterised by oxygen index test, cone calorimeter and thermogravimetric analysis (TGA). The morphological characterisation showed that pristine and diphosphonium modified clays are almost slightly intercalated, while ammonium modified one is very well dispersed. The results of thermal characterisation showed that in the presence of phosphinate enhancements of oxygen index, fire behaviour, measured by cone calorimeter, and thermal stability have been achieved. Phosphinate is therefore an efficient flame retardant for polyurethane foams and its flame retardancy action takes place in both condensed and gas phases. Pristine and ammonium modified layered silicate bring some enhancements of thermal stability while having no important effect in decreasing peak heat release rate (PHRR) and total heat evolved (THE) when used in conjunction with phosphinate; their main advantage is related to the enhancement of compactness of the char layer formed. Diphosphonium clay is instead effective in further improving the fire behaviour of the foams because of the flame retardancy action of phosphonium: both PHRR and THE were decreased. The analysis of cone calorimeter data showed that clays act through physical effect constituting a barrier at the surface which is effective in preventing or slowing the diffusion of volatiles and oxygen, while phosphinate and phosphonium are more effective owing to their combined action in both condensed and gas phases.  相似文献   

20.
陈力  王玉忠 《高分子科学》2012,30(2):297-307
A novel encapsulated flame retardant containing phosphorus-nitrogen(MSMM-Al-P) was prepared by encapsulating with polyamide 66(PA66-MSMM-Al-P) for the flame retardation of polyamide 6(PA6).The structure and thermal properties of PA66-MSMM-Al-P were characterized by Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy and thermogravimetric analysis.The flammability of PA6 containing flame retardants(MSMM-Al -P and PA66-MSMM-Al-P) was investigated by the limiting oxygen index test,vertical burning test and cone calorimeter. The flame retardancy and cone calorimetric analyses suggested a synergistic effect between PA66 and MSMM-Al-P in the flame-retardant PA6.Thermal stability of the flame-retardant PA6 was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号