首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetyltropic acid is an important synthetic intermediate for preparation of tropane alkaloid derivatives, which can be used as anticholinergic drugs, deliriants, and stimulants. In the present work, acetyltropic acid was successfully enantioseparated by countercurrent chromatography using sulfobutyl ether‐β‐cyclodextrin as chiral selector. A biphasic solvent system composed of n‐butyl acetate/n‐hexane/0.1 mol/L citrate buffer at pH = 2.2 containing 0.1 mol/L of sulfobutyl ether‐β‐cyclodextrin (7:3:10, v/v) was selected, which produced a suitable distribution ratio D= 1.14, D= 2.31 and a high enantioseparation factor α = 2.03. Baseline separation was achieved for preparative enantioseparation of 50 mg of racemic acetyltropic acid. A method for chiral analysis of acetyltropic acid by conventional reverse phase liquid chromatography with hydroxylpropyl‐β‐cyclodextrin as mobile phase additive was established, and formation constants of inclusion complex were determined. It was found that different substituted β‐cyclodextrin should be selected for enantioseparation of acetyltropic acid by countercurrent chromatography and reverse phase liquid chromatography.  相似文献   

2.
A recycling high‐speed countercurrent chromatography protocol was proposed for the enantioseparation of brompheniramine by employing β‐cyclodextrin derivatives as a chiral selector. The two‐phase solvent system of n‐hexane/isobutyl acetate/0.10 mol/L phosphate buffer solution with a volume ratio of 2:4:6 was selected by a series of extraction experiments. Factors that affected the distribution of the enantiomers over the two‐phase system (e.g., the type and concentration of β‐cyclodextrin derivatives = pH value of the aqueous solution, and the separation temperature) were also investigated. In addition, the theory of thermodynamics is applied to verify the feasibility of the enantioseparation process and the corresponding results demonstrate that this separation process is feasible. The optimized conditions include carboxymethyl‐β‐cyclodextrin concentration of 0.010 mol/L, pH of 7.5, and temperature of 5°C. Under the optimal conditions, the purities of both monomer molecules were over 99%, and the recovery yields were 88% for (+)‐brompheniramine and 85% for (–)‐brompheniramine, respectively.  相似文献   

3.
3‐Phenyllactic acid is an antimicrobial compound with broad‐spectrum activity against various bacteria and fungus. The observed difference in pharmacological activity between optical isomeric 3‐phenyllactic acid necessitates a method for enantioseparation. Chiral ligand exchange countercurrent chromatography was investigated for the enantioseparation of 3‐phenyllactic acid with a synthesized chiral ligand. A two‐phase solvent system was composed of n‐butanol/hexane/water (0.4:0.6:1, v/v/v) to which Nn‐dodecyl‐l ‐hydroxyproline was added to the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transitional metal ion. The influence factors were optimized by enantioselective liquid–liquid extraction. Baseline enantioseparation of racemic 3‐phenyllactic acid by analytical high‐speed countercurrent chromatography was achieved. The optical purities of enantiomeric 3‐phenyllactic acid reached 99.0%, as determined by chiral high‐performance liquid chromatography.  相似文献   

4.
Four stereoisomeric components were produced during the synthesis of the antidepressant drug (1S, 4S)‐sertraline hydrochloride due to the two chiral carbon centers in its chemical structure, including (1S, 4S), (1R, 4R), (1S, 4R), and (1R, 4S)‐isomer. Stereoselective separation of the target isomer (1S, 4S)‐sertraline from the medicinal reaction mixtures by countercurrent chromatography using hydroxypropyl‐β‐cyclodextrin as the stereoselective selector was investigated. A biphasic solvent system composed of n‐hexane/0.20 mol/L phosphate buffer solution with pH 7.6 containing 0.10 mol/L of hydroxypropyl‐β‐cyclodextrin (1:1, v/v) was selected for separation of cis‐sertraline and trans‐sertraline using reverse phase elution mode and (1S, 4S)‐sertraline was separated with (1R, 4R)‐sertraline using recycling elution mode. A fabricated in‐house analytical countercurrent chromatographic apparatus was used for optimization of the separation conditions. Stationary phase retention and peak resolution were investigated for separation of cis‐sertraline and trans‐sertraline by the analytical apparatus.  相似文献   

5.
Recycling high‐speed counter‐current chromatography was successfully applied to the preparative separation of oxybutynin enantiomers. The two‐phase solvent system consisted of n‐hexane, methyl tert‐butyl ether, and 0.1 mol/L phosphate buffer solution (pH = 5.0) with the volume ratio of 6:4:10. Hydroxypropyl‐β‐cyclodextrin was employed as the chiral selector. The influence of factors on the chiral separation process, including the concentration of chiral selector, the equilibrium temperature, the pH value of the aqueous phase were investigated. Under optimum separation conditions, 15 mg of oxybutynin racemate was separated with the purities of both the enantiomers over 96.5% determined by high‐performance liquid chromatography. Recovery for the target compounds reached 80–82% yielding 6.00 mg of (R)‐oxybutynin and 6.15 mg of (S)‐oxybutynin. Technical details for recycling elution mode were discussed.  相似文献   

6.
The separation of ten epimeric aromatic acid (−)‐menthol esters by countercurrent chromatography with hydroxypropyl‐β‐cyclodextrin as the mobile phase additive was investigated, and methods for the analysis of all the epimeric esters by reversed‐phase high‐performance liquid chromatography were established. A biphasic solvent system composed of n‐hexane/20–70% methanol containing 50 mmol/L of hydroxypropyl‐β‐cyclodextrin (1:1, v/v) was selected, which provided high separation factors for five of the epimeric esters, and successful separations by countercurrent chromatography were achieved. The complete separation of five pairs of epimeric ester was obtained with the purity being over 98% for each peak fractions, as determined by high‐performance liquid chromatography. The recovery of each analyte from the eluted fractions reached around 80–88%.  相似文献   

7.
A novel chiral ionic liquid functionalized β‐cyclodextrin, 6‐O‐2‐hydroxpropyltrimethylammonium‐β‐cyclodextrin tetrafluoroborate ([HPTMA‐β‐CD][BF4]), was synthesized and used as a chiral selector in capillary electrophoresis. [HPTMA‐β‐CD][BF4] not only increased the solubility in aqueous buffer in comparison with the parent compound, but also provided a stable reversal electroosmotic flow, and the enantioseparation of eight chiral drugs was examined in phosphate buffer containing [HPTMA‐β‐CD][BF4] as the chiral selector. The effects of the [HPTMA‐β‐CD][BF4] concentration and the background electrolyte pH were studied. Moreover, the chiral separation abilities of β‐CD and [HPTMA‐β‐CD][BF4] were compared and possible mechanisms for the chiral recognition of [HPTMA‐β‐CD][BF4] are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This work concentrates on extending the utilization of multiple dual mode (MDM) counter‐current chromatography in chiral separations. Two aromatic acids, 2‐(6‐methoxy‐2‐naphthyl)propionic acid (NAP) and 2‐phenylpropionic acid (2‐PPA), were enantioseparated by MDM counter‐current chromatography using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as chiral selector. The two‐phase solvent systems consisting of n‐hexane/ethyl acetate 0.1 mol/L phosphate buffer pH 2.67 containing 0.1 mol/L HP‐β‐CD (7.5:2.5:10 for NAP and 7:3:10 for 2‐PPA, v/v/v) were used. Conventional MDM and modified MDM were compared according to peak resolution under current separation mechanism. The influence of elution time after the first‐phase inversion and number of cycles for MDM were investigated. Peak resolution of NAP and 2‐PPA increased from 0.62 to 1.05 and 0.72 to 0.84, respectively, using optimized MDM conditions. Being an alternative elution method for counter‐current chromatography, MDM elution greatly improved peak resolution in chiral separations.  相似文献   

9.
The enantioselective separation of pheniramine was studied by a high‐speed countercurrent chromatography method using β‐cyclodextrin derivatives as a chiral selector. Several key variables, for instance, type of organic solvent and chiral selector, concentration of chiral selector, pH value of aqueous phase, and temperature on the enantioselectivity, were investigated systematically by liquid–liquid extraction experiments. Combining the results of extraction experiments and high‐speed countercurrent chromatography, the most suitable conditions for separation of pheniramine enantiomers were obtained with the two‐phase system that consisted of isobutyl acetate/aqueous phase, containing 0.02 mol/L carboxymethyl‐β‐cyclodextrin, pH 8.50 at 278.15 K. Under the optimal conditions, pheniramine enantiomer was successfully resolved after four cycles of high‐speed countercurrent chromatography. By using high‐performance liquid chromatography to analyze the fractions, the purities of both (+)‐pheniramine and (–)‐pheniramine were over 99% and the recovery of this method was up to 85–90%.  相似文献   

10.
Two β‐adrenergic blocking agents, 1‐[(1‐methylethyl)amino]‐3‐phenoxy‐2‐propanol ( 1 ) and 1‐[(1‐methylethyl)amino]‐3‐(3‐methylphenoxy)‐2‐propanol ( 2 ; Toliprolol), were enantioseparated by pH‐zone‐refining countercurrent chromatography. A two‐phase solvent system composed of chloroform containing 0.10 mol/L of di‐n‐hexyl l‐ tartrate/0.10 mol/L of boric acid aqueous solution (1:1, v/v) was selected, in which 20 mmol/L triethylamine was added in the organic phase as a retainer and 2 mmol/L HCl was added in the aqueous phase as an eluter. Fifty milligrams of each racemate was completely enantioseparated by pH‐zone‐refining countercurrent chromatography to yield each enantiomer with a purity of more than 98%, and the recovery of each separated enantiomer reached around 76–82%.  相似文献   

11.
Chiral separation of 12 pairs of basic analyte enantiomers including oxybutynin, bambuterol, tradinterol, clenbuterol, clorprenaline, terbutaline, tulobuterol, citalopram, phencynonate, fexofenadine, salbutamol, and penehyclidine was conducted by capillary electrophoresis using a single‐isomer anionic β‐cyclodextrin derivative, heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin as the chiral selector. Parameters influencing separation were studied, including background electrolyte pH, heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin concentration, buffer concentration, and separation voltage. A background electrolyte consisting of 50 mM Tris‐H3PO4 and 6 mM heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin at pH 2.5 was found to be highly efficient for the separation of most enantiomers, with other conditions of normal polarity mode at 10 kV, detection wavelength of 210 nm using hydrodynamic injection for 3 s. Under the optimal conditions, baseline resolution (>1.50) for 11 pairs of enantiomers and somewhat lower resolution for penehyclidine enantiomers (1.17) were generated. Moreover, the possible mechanism of separation of clenbuterol, oxybutynin, salbutamol, and penehyclidine was investigated using a computational modeling method.  相似文献   

12.
Chiral ITP of the weak base methadone using inverse cationic configurations with H+ as leading component and multiple isomer sulfated β‐CD (S‐β‐CD) as leading electrolyte (LE) additive, has been studied utilizing dynamic computer simulation, a calculation model based on steady‐state values of the ITP zones, and capillary ITP. By varying the amount of acidic S‐β‐CD in the LE composed of 3‐morpholino‐2‐hydroxypropanesulfonic acid and the chiral selector, and employing glycylglycine as terminating electrolyte (TE), inverse cationic ITP provides systems in which either both enantiomers, only the enantiomer with weaker complexation, or none of the two enantiomers form cationic ITP zones. For the configuration studied, the data reveal that only S‐methadone migrates isotachophoretically when the S‐β‐CD concentration in the LE is between about 0.484 and 1.113 mM. Under these conditions, R‐methadone migrates zone electrophoretically in the TE. An S‐β‐CD concentration between about 0.070 and 0.484 mM results in both S‐ and R‐methadone forming ITP zones. With >1.113 mM and < about 0.050 mM of S‐β‐CD in the LE both enantiomers are migrating within the TE and LE, respectively. Chiral inverse cationic ITP with acidic S‐β‐CD in the LE is demonstrated to permit selective ITP trapping and concentration of the less interacting enantiomer of a weak base.  相似文献   

13.
This study investigates the ability of functionalized multiwalled carbon nanotubes (MWCNTs) for enantio‐separation of metoprolol chiral forms. 2Hydroxypropyl‐β‐cyclodextrin (2HP‐β‐CD) was applied as a chiral selector to functionalize carbon nanotubes (CNTs). The modified multiwalled CNT samples were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. The results of analyses showed that CNTs were successfully cross‐linked with 2HP‐β‐CD. To evaluate the enantio‐separation property of the products, the separation of metoprolol chiral forms on the initial and final products was examined. Further, UV–visible spectroscopy and polarimeter analyses were used for characterization. The results indicate that MWCNT does not have any intrinsic enantio‐separation ability, although its selectivity for enantio‐separation can be enhanced by cross‐linking it to 2HP‐β‐CD. Moreover, the optimal mass of adsorbent as well as optimal mass of functional groups is estimated to achieve maximum enantio‐separation efficiency. The results indicate that applying large amounts of 2HP‐β‐CD to CNTs functionalization decreases the cross‐linking efficiency, which consequently reduces enantio‐separation efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The enantio‐separations of eight 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs (2‐APA NSAIDs) were established using reversed‐phase high‐performance liquid chromatography with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as chiral mobile phase additive for studying the stereoselective skin permeation of suprofen, ketoprofen, naproxen, indoprofen, fenoprofen, furbiprofen, ibuprofen and carprofen. The effects of the mobile phase composition, concentration of HP‐β‐CD and column temperature on retention and enantioselective separation were investigated. With 2‐APA NSAIDs as acidic analytes, the retention times and resolutions of the enantiomers were strongly related to the pH of the mobile phase. In addition, both the concentration of HP‐β‐CD and temperature had a great effect on retention time, but only a slight or almost no effect on resolutions of the analytes. Enantioseparations were achieved on a Shimpack CLC‐ODS (150 × 4.6 mm i.d., 5 μm) column. The mobile phase was a mixture of methanol and phosphate buffer (pH 4.0–5.5, 20 mM) containing 25 mM HP‐β‐CD. This method was flexible, simple and economically advantageous over the use of chiral stationary phase, and was successfully applied to the enantioselective determination of the racemic 2‐APA NSAIDs in an enantioselective skin permeation study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

16.
Complete resolution of hydroxyeicosatetraenoic acid (HETE) enantiomers was achieved using hydroxypropyl‐γ‐cyclodextrin (HP‐γ‐CD)‐modified MEKC. The optimum running conditions were determined to be utilizing a 30 mM phosphate–15 mM borate buffer (pH 9.0) containing 30 mM HP‐γ‐CD and 75 mM SDS as the BGE, application of +30 kV as the effective voltage, and carrying out the experiment at 15°C. The eluents were detected at 235 nm. The method was used successfully for the simultaneous separations of (S)‐ and (R)‐enantiomers of regioisomeric 8‐, 11‐, 12‐, and 15‐HETEs. Subsequently, the optimized method was applied to evaluate the stereochemistry of 8‐ and 12‐HETEs from the marine red algae, Gracilaria vermiculophylla and Gracilaria arcuata, respectively. The 8‐HETE was found to be a mixture of 98% (R)‐enantiomer and 2% (S)‐enantiomer, while the 12‐HETE was a mixture of 98% (S)‐enantiomer and 2% (R)‐enantiomer. The present study demonstrates that the HP‐γ‐CD‐modified MEKC method is simple and sensitive and provides unambiguous information on the configuration of natural and synthetic HETEs.  相似文献   

17.
Summary Dimethylated-β-cyclodextrins dynamically adsorbed on porous graphitic carbon have been used as chiral selectors in chiral supercritical-(or subcritical-) fluid chromatography. The kinetics of adsorption and desorption were studied with CO2-methanol+dimethylated-β-cyclodextrins and CO2-methanol as mobile phases. The system was proved to be stable and reproducible and to afford rapid enantiomer separations especially when performed with 95:5 CO2-methanol+dimethylated-β-cyclodextrin as mobile phase. The versatility of the chiral system enabled the use of a variety of chiral selectors. It was found that enantiomer separation can vary largely as a function of the composition of commercial dimethylated-β-cyclodextrin mixture.  相似文献   

18.
A biphasic chiral recognition system based on chiral ligand exchange with Cu(II)‐Nn‐dodecyl‐L‐proline and hydroxypropyl‐β‐cyclodextrin as an additive was developed to enantioseparate aromatic β‐amino acids by high‐speed counter‐current chromatography. The biphasic chiral recognition system was established with an n‐butanol/water (1:1, v/v) solvent system by adding Nn‐dodecyl‐L‐proline and Cu(II) ions to the organic phase and hydroxypropyl‐β‐cyclodextrin to the aqueous phase. Several separation parameters, such as temperature, pH value, and chiral selector concentration, were systematically investigated by enantioselective liquid–liquid extraction. Under the optimal separation conditions, 54.5 mg of (R,S)‐β‐phenylalanine and 74.3 mg of (R,S)‐β‐3,4‐dimethoxyphenylalanine were baseline enantioseparated. More importantly, the synergistic enantiorecognition mechanism, based on the Cu(II)‐Nn‐dodecyl‐L‐proline and hydroxypropyl‐β‐cyclodextrin, was discussed for the first time.  相似文献   

19.
In this work, the antitumor constituent β‐elemene was selectively separated from the volatile oil of the Curcumae Rhizoma by countercurrent chromatography with silver nitrate as selective reagent based on the formation of coordination complexes. A biphasic solvent system composed of n‐hexane/methanol/water (2:1.5:0.5, v/v/v) was selected, in which 0.15 mol/L of silver nitrate was added to the aqueous phase. The aqueous phase was used as the stationary phase for separation of β‐elemene by countercurrent chromatography after it was partially purified from the volatile oil by silica gel column chromatography. An enriched β‐elemene fraction was obtained by silica gel column chromatography to improve the percentage of β‐elemene from 16.5 to 46.1%. Subsequently, β‐elemene was further purified from 445 mg of the partially purified sample of volatile oil by countercurrent chromatography with silver nitrate as a selective reagent, yielding 145 mg of β‐elemene with greater than 99% purity, as determined by gas chromatography mass spectrometry. The recovery of β‐elemene from the crude volatile oil through two steps was around 63.6%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号