首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《先进技术聚合物》2018,29(7):1988-2001
The present study reports synthesis and characterization of a new acrylamide‐based monomer containing rhodanine moiety, N‐3‐amino‐thiazolidine‐4‐one‐acrylamide (ATA). Poly(ATA)‐grafted magnetite nanoparticles (poly(ATA)‐g‐MNPs) were prepared using surface‐initiated atom transfer radical polymerization of the monomer on Fe3O4 nanoparticles. The grafted nanoparticles were characterized by Fourier transform infrared analysis, scanning electron microscopy, X‐ray diffraction, and vibrating sample magnetometry. The amount of the grafted polymer was 209 mg g−1, as calculated from thermogravimetric analysis experiment. The capability of poly(ATA)‐g‐MNPs to remove Co(II) cations was shown under optimal conditions of contact time, pH, adsorbent dosage, and initial Co(II) concentration. About 86% of the Co(II) cations were removed over 7 minutes. The adsorption kinetics obeyed the pseudo–second‐order kinetic equation, and the Langmuir isotherm model best described the adsorption isotherm with a maximum adsorption capacity of 3.62 mg g−1. The thermodynamic investigation showed spontaneous nature of the adsorption process (ΔG = −2.90 kJ mol−1 at 25°C ± 1°C). In addition, the poly(ATA)‐g‐MNPs were regenerated by simply washing with an aqueous 0.1M HCl solution. The study of the reusability of the prepared magnetic sorbent revealed that the sorbent can be reused without a significant decrease in the extraction efficiency and be recovered by 95.4% after 7 cycles. These findings suggest that the grafted nanoparticles are stable and reusable adsorbent and can be potentially applied to water treatment in efficient removal of Co(II) cations.  相似文献   

2.
Novel, thermally stable polyimides (PIs) containing a 1,3,4‐oxadiazole and pyridine moieties based on a new aromatic diamine 2,5‐bis‐(aminopyridine‐2‐yl)‐1,3,4‐oxadiazole, BAPO, were synthesized. The prepared polymers were soluble in dimethysulfoxide (DMSO) and concentrated sulfuric acid at room temperature as well as in polar and aprotic solvents, such as, N‐methylpyrrolidone (NMP) and N,N‐dimethylacetamide (DMAc) at elevated temperature. Thermal behaviors of the PIs were studied by thermogravimetric analysis/dynamic thermal analysis (TGA‐DTA) and differential scanning calorimetry (DSC). The inherent viscosities of the PI solutions were in the range of 0.38–0.61 dl/g (in DMSO with a concentration of 0.125 g/dl at 25 ± 0.5°C). The removal of Co(II) and Ni(II) ions from aqueous solutions was performed using polymer 6, which was obtained from BAPO and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA). The maximum adsorption capacity was observed for Co(II) ion at pH = 7.0 (110.4 mg g?1, 1.87 mmol g?1). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Nanogels based on biocompatible, dual pH‐ and temperature‐sensitive poly(2‐(diethylamino)ethyl) methacrylate (PDEAEMA) have been successfully used as nanocontainers for the encapsulation of magnetite, Fe3O4 magnetic nanoparticles (MNPs). For this purpose, citric acid‐coated MNPs were encapsulated into previously synthesized PDEAEMA‐based nanogels using a poly(ethyleneglycol)‐based stabilizer. After the encapsulation of the magnetite MNPs, the so‐called magneto‐nanogels (MNGs) were proved to be multiresponsive on temperature, pH, and magnetic field and colloidally stable. Moreover, preliminary studies on the biocompatibility of these MNGs with cells of human peripheral blood were performed and evidenced quite tolerable biocompatibility, thus suggesting potential use in biomedical applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1479–1494  相似文献   

4.

The present study aimed to synthesize poly(acrylic acid) hydrogel embedded with magnetic cobalt (Co) nanoparticles and to investigate their potential in adsorption and catalysis. The hydrogel was prepared by facile free radical polymerization reaction and Co nanoparticles were fabricated within hydrogel by reducing Co (II) ions using NaBH4 as reducing agent. Co nanoparticles within hydrogel system imparted magnetic properties to the resulting composite gel and also increased the adsorption capacity. The swelling study of hydrogel was carried out by gravimetric analysis. Different functional groups were identified by Fourier Transform Infrared Spectroscopy and Transmission Electron Microscopy analysis was done to investigate dispersion of Co nanoparticles in hydrogel. The bare hydrogel along with Co nanoparticles loaded gel were tested as adsorbent systems for the removal of a cationic dye (methylene blue) from aqueous solution. 95% removal of methylene blue was achieved with a highest adsorption capacity of 836.5 mg/g of adsorbent. The famous adsorption isotherms were used to evaluate adsorption data. Results showed that Freundlich isotherm model was followed with R2 value of 0.95. The hydrogel was also used for catalytic reduction in a toxic pollutant, i.e., 4-nitrophenol. Experimental data for 4-nitrophenol reduction followed pseudo first order kinetics model. Activation energy and apparent rate constant were calculated as 9.24 kJ/mol and 0.24 min−1, respectively. Recycling of the magnetic poly(acrylic acid) hydrogel fabricated with Cobalt nanoparticles was carried out for four consecutive cycles and no significant loss in catalytic activity was observed.

  相似文献   

5.
Polycyclic chalcone‐containing polyacrylamides, namely, poly ((N‐(4‐((E)‐3‐(naphthalen‐6‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide), poly((N‐(4‐((E)‐3‐(1H‐indol‐3‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide), and poly((N‐(4‐((E)‐3‐oxo‐3‐(10H‐phenothiazin‐8‐yl) prop‐1‐enyl) phenyl) acrylamide), were synthesized by Claisen–Schmidt condensation reaction, followed by ultrasonic irradiation reduction. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and 13C nuclear magnetic resonance spectroscopic technique. The newly synthesized polymers have been screened for antibacterial and antifungal activities by using resazurin reduction assay method, and the resulting polyacrylamides showed promising activity against various tested bacteria and fungi. Among the polymers, poly((N‐(4‐((E)‐3‐oxo‐3‐(10H‐phenothiazin‐8‐yl) prop‐1‐enyl) phenyl) acrylamide) and poly((N‐(4‐((E)‐3‐(1H‐indol‐3‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide) exhibited better antifungal and antibacterial activities than poly ((N‐(4‐((E)‐3‐(naphthalen‐6‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide), whereas all the polymers do not show any sign of antibacterial and antifungal activity against Streptococcus faecalis and Candida glabrata. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

7.
A new 1,3,4‐oxadiazole‐containing bispyridyl ligand, namely 5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione (L), has been used to create the novel complexes tetranitratobis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena‐poly[[[dinitratocopper(II)]‐bis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two‐dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square‐pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinked via two kinds of π–π stacking interactions along [01]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.  相似文献   

8.
The synthesis of poly(ionic liquid) (PIL) nanoparticles grafted with a poly(N‐isopropyl acrylamide) (PNIPAM) brush shell is reported, which shows responsiveness to temperature and ionic strength in an aqueous solution. The PIL nanoparticles are first prepared via aqueous dispersion polymerization of a vinyl imidazolium‐based ionic liquid monomer, which is purposely designed to bear a distal atom transfer radical polymerization (ATRP) initiating group attached to the long alkyl chain via esterification reaction. The size of the PIL nanoparticles can be readily tuned from 25 to 120 nm by polymerization at different monomer concentrations. PNIPAM brushes are successfully grafted from the surface of the poly(ionic liquid) nanoparticles via ATRP. The stimuli‐responsive behavior of the poly(ionic liquid) nanoparticles grafted with PNIPAM brushes (NP‐g‐PNIPAM) in aqueous phase is studied in detail. Enhanced colloidal stability of the NP‐g‐PNIPAM brush particles at high ionic strength compared to pure PIL nanoparticles at room temperature is achieved. Above the lower critical solution temperature (LCST) of PNIPAM, the brush particles remain stable, but a decrease in hydrodynamic radius due to the collapse of the PNIPAM brush onto the PIL nanoparticle surface is observed.

  相似文献   


9.

Based on the advantages of Fe3O4 nanoparticles (MNPs), sawdust (SD), and polyethlenimine (PEI) respectively, the SD/MNPs/PEI composites with layered structure were synthesized. The features of the nanocomposites were characterized and experimental conditions were used to evaluate the potential of SD/ MNPs and SD/MNPs/PEI nanocomposites in removing lead ions Pb2+ in a batch system. By cross-linking PEI on the SD/ MNPs, chelating group on the surface of adsorbent is made, which increases the ability of the nanocomposite to attract Pb(II) from aqueous solutions. Results show an increase in the adsorption by about 31% on SD/MNPs, by about 98% in SD/MNPs/PEI.

  相似文献   

10.
Silica gel chemically modified with 1,3,4-thiadiazol-2-thiol groups recovered 99% of the copper(II) from solutions of pH 4–6; the adsorption equilibrium was attained in no more than 5 minutes. During irradiation with ultraviolet light, a yellow-orange luminescence (λmax = 575 nm) of surface copper complexes appeared in the phase of adsorbent cooled to 77 K; it was used as an analytical signal in the procedure for the low-temperature adsorption-luminescence determination of copper concentration. The detection limit was 0.3 μ g/0.1 g adsorbent. The calibration graph was linear up to 50 μg/0.1 g adsorbent. The determination of copper concentration is not affected by 10000-fold amounts of Zn(II), Cd(II), Mn(II), Co(II), Ca(II), Mg(II), and Al(III) and 300-fold amounts of Fe(III). The procedure was used to determine copper concentration in natural and technogenic waters.  相似文献   

11.
Two new symmetric double‐armed oxadiazole‐bridged ligands, 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate (L1) and 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate (L2), were prepared by the reaction of 2,5‐bis(2‐hydroxy‐5‐methylphenyl)‐1,3,4‐oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a molecular complex, bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuII cation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter‐ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supramolecule, diacetonitriledi‐μ3‐iodido‐di‐μ2‐iodido‐bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuI atoms are four‐coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope‐ladder‐type [Cu4I4] unit. Discrete units are linked into one‐dimensional chains through π–π interactions.  相似文献   

12.
A new polymer containing double amidoxime groups per repeating unit was synthesized to enhance the metal ion uptake capacity. The adsorption properties of this new polymeric adsorbent, amidoximated poly(N,N-dipropionitrile acrylamide), for U(VI), V(V), Cu(II), Co(II) and Ni(II) ions were investigated by batch and flow-through processes at very low concentration levels (ppb). The chelating polymer showed high adsorption capacity for uranyl as well as vanadyl ions. In selectivity studies from a mixture of metal ions in aqueous solutions, the adsorbent showed high selectivity for uranyl and vanadyl ions in the following order: U(VI) > V(V) Co(II) = Cu(II) Ni(II) as determined by calculating the distribution coefficients D, of corresponding ions. The adsorption of uranyl and vanadyl ions from natural seawater by the new adsorbent was also examined in flow through mode.  相似文献   

13.
The molecular structures of blue dichloro‐tetrakis(acrylamide) cobalt(II), [Co{O‐OC(NH2)CH=CH2}4Cl2] ( 1 ) and pink hexakis(acrylamide)cobalt(II) tetrachlorocobaltate(II), [Co{O‐OC‐(NH2)CH=CH2}6][CoCl4] ( 2 ), characterized by single X‐ray diffraction, IR spectroscopy and elemental analyses, are described. The coordination of CoII in 1 involves a tetragonally distorted octahedral structure with four O‐donor atoms of acrylamide in the equatorial positions and two chloride ions in the apical positions. The second complex 2 in ionic form contains CoII cations surrounded by an octahedral array of O‐coordinated acrylamide ligands, accompanied by a [CoCl4]2? anion.  相似文献   

14.
A comparative analysis of the magnetic properties of iron oxide nanoparticles grown in the cavity of the DNA‐binding protein from starved cells of the bacterium Listeria innocua, LiDps, and of its triple‐mutant lacking the catalytic ferroxidase centre, LiDps‐tm, is presented. TEM images and static and dynamic magnetic and electron magnetic resonance (EMR) measurements reveal that, under the applied preparation conditions, namely alkaline pH, high temperature (65 °C), exclusion of oxygen, and the presence of hydrogen peroxide, maghemite and/or magnetite nanoparticles with an average diameter of about 3 nm are mineralised inside the cavities of both LiDps and LiDps‐tm. The magnetic nanoparticles (MNPs) thus formed show similar magnetic properties, with superparamagnetic behaviour above 4.5 K and a large magnetic anisotropy. Interestingly, in the EMR spectra an absorption at half‐field is observed, which can be considered as a manifestation of the quantum behaviour of the MNPs. These results indicate that Dps proteins can be advantageously used for the production of nanomagnets at the interface between molecular clusters and traditional MNPs and that the presence of the ferroxidase centre, though increasing the efficiency of nanoparticle formation, does not affect the nature and fine structure of the MNPs. Importantly, the self‐organisation of MNP‐containing Dps on HRTEM grids suggests that Dps‐enclosed MNPs can be deposited on surfaces in an ordered fashion.  相似文献   

15.
A novel poly(aniline‐coo‐aminophenol) (PAOA)/mesoporous silica SBA‐15 nanocomposite was synthesized and investigated for adsorption of Hg (II) from aqueous solutions of wide pH range. A chemical oxidation method was employed for polymerization of aniline and o‐aminophenol on an ordered SBA‐15 template to obtain a significantly enlarged BET surface area of the adsorbent. Efficiency study revealed that the PAOA/SBA‐15 could reach a maximum Hg (II) adsorption capacity of over 400 mg/g. Kinetic study showed that the Hg (II) adsorption by the PAOA/SBA‐15 fitted a pseudo‐second‐order kinetic model, indicating that the mercury adsorption process was predominantly controlled by chemical process. The results of this study also proved that the adsorbed Hg (II) could be effectively desorbed from the PAOA/SBA‐15 in 0.1M HCl and 5% sulfocarbonide solutions. Associated adsorption mechanism was also investigated by means of Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, magnetite nanoparticles (MNPs) coated with glycopolymer bearing glucose moieties were designed with optimal structural, colloidal, and magnetic properties for biomedical applications. MNPs with an average size of 17 ± 2 nm were synthesized by thermal decomposition process and then their surfaces were modified with active vinyl groups. Two different monomers were immobilized onto the surfaces: dopamine methacrylamide, a monomer with properties inspired on mussels adhesive capacity, or unprotected glycomonomer, 2‐{[(D ‐glucosamin‐2N‐yl)carbonyl]‐oxy}ethyl methacrylate. Afterward, the glycomonomer were polymerized at the interface of both vinyl functionalized MNPs by conventional radical polymerization. The resultant hybrid NPs were water dispersible presenting good stability in aqueous solution for long time periods. Moreover, the high density of carbohydrates at the surface of the magnetic NPs could confer targeting properties to the system as demonstrated by studies of their binding interactions with lectins, where the binding activity is higher as the glycopolymer content augments. The magnetic and magneto‐thermal properties of the synthesized hybrid NPs were evaluated. The magnetization curves reveal superparamagnetic features at 300 K, with high values of saturation magnetization. Furthermore, the hybrid glycoparticles show suitable heat dissipation power when exposed to alternating magnetic field conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Several 6‐substituted‐3‐[(5‐mercepto‐1,3,4‐oxadiazol‐2‐yl)methyl]‐2‐substituted quinazolin‐4(3H)‐one or 6‐substituted‐3‐[4‐(5‐mercepto‐1,3,4‐oxadiazol‐2‐yl)phenyl]‐2‐substituedquinazolin‐4(3H)‐one 2(a‐l) and 6‐substituted‐3‐[(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)methyl]‐2‐substitutedquinazolin‐4(3H)‐one or 6‐substi‐tuted‐3‐[4‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl) phenyl]‐2‐substitutedquinazolin‐4(3H)‐one 3(a‐l) were synthesized using conventional and microwave techniques respectively and were screened for antibacterial and antifungal activity.  相似文献   

18.
Poorly crystalline and well-dispersed hydroxyapatite (HAP) nanoparticles were synthesized and used as novel adsorbents for the removal of Cu(II) from aqueous solution. Various factors affecting the adsorption such as adsorbent crystallinity, pH, adsorbent dosage, contact time, temperature, competing cations, and the presence of humic acid were investigated in detail. Results showed that the HAP calcined at lower temperature was poorly crystalline and had better adsorption capacity for Cu(II) than those calcined at higher temperature. Cu(II) removal was increased with increases of pH, adsorbent dosage, temperature, and the presence of humic acid, but decreased as the existence of competing divalent cations. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Langmuir model, and the estimated maximum adsorption capacity of poorly crystalline HAP was 41.80 mg/g at 313 K, displaying higher efficiency for Cu(II) removal than many previously reported adsorbents. Thermodynamics studied revealed that the adsorption of Cu(II) by poorly crystalline HAP was spontaneous, endothermic, and entropy-increasing in nature. This study showed that poorly crystalline HAP could be used as an efficient adsorbent material for the removal of Cu(II) from aqueous solution.  相似文献   

19.
In this study, we describe the use of the combination of eletrografting poly(N‐mercaptoethyl acrylamide) and Au nanoparticles in the construction of high‐performance biosensors. The poly(N‐mercaptoethyl acrylamide) was electrografted onto the glassy carbon electrode surface, which provided a strongly adhering primer film for the stable attachment of Au nanoparticles and horseradish peroxidase (HRP) enzymes. The performances of the biosensors based on the HRP immobilized in the Au/poly(N‐mercaptoethyl acrylamide) composite film were investigated. A couple of redox peaks were obtained, indicating that the Au nanoparticles could facilitate the direct‐electron transfer between HRP and the underlying electrode. The biosensor showed an excellent electrocatalytic activity toward the reduction of hydrogen oxide and long‐term stability, owing to the stable electrografted film and biocompatible Au nanoparticles. Our results demonstrate that the combination of electrografting and Au nanoparticles provides a promising platform for the immobilization of biomolecules and analysis of redox enzymes for their sensing applications.  相似文献   

20.
This work focused on surface modification of magnetite nanoparticle (MNP) with poly(poly(ethylene glycol) monomethyl ether methacylate)‐b‐(poly(N‐isopropylacrylamide)‐st‐poly(thiolactone acrylamide)), PPEGMA‐b‐(PNIPAAm‐st‐PTlaAm), diblock copolymer, synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization to obtain the particles having good water dispersible PPEGMA brushes, thermo‐responsive PNIPAAm, and reactive thiolactone groups of PTlaAm. The thiolactone moiety in the copolymer can readily react with amino groups grafted on MNP surface and essentially induced the formation of MNP nanocluster. According to transmission electron microscopy (TEM), the size of the nanocluster ranged between 200 and 500 nm per cluster with 8 to 10 nm in diameter for each particle. Hydrodynamic diameter of the nanocluster significantly decreased as the dispersion temperature increased from 25°C to 45°C due to the shrinkage of thermo‐responsive PNIPAAm when crossing its lower critical solution temperature (LCST). This stable nanocluster might be potentially used as a magnetic carrier for control release of entrapped entities with a thermally triggering mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号