共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of metrological weighing, the measurement of isotope amount ratios by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) and the use of high-purity reference materials are the cornerstones to achieve improved results for the amount content of lead in wine by the reversed isotope dilution technique. Isotope dilution mass spectrometry (IDMS) and reversed IDMS have the potential to be a so-called primary method, with which close comparability and well-stated combined measurement uncertainties can be obtained.This work describes the detailed uncertainty budget determination using the ISO-GUM approach. The traces of lead in wine were separated from the matrix by ion exchange chromatography after HNO(3)/H(2)O(2) microwave digestion. The thallium isotope amount ratio ( n((205)Tl)/ n((203)Tl)) was used to correct for mass discrimination using an exponential model approach. The corrected lead isotope amount ratio n((206)Pb)/ n((208)Pb) for the isotopic standard SRM 981 measured in our laboratory was compared with ratio values considered to be the least uncertain. The result has been compared in a so-called pilot study "lead in wine" organised by the CCQM (Comité Consultatif pour la Quantité de Matière, BIPM, Paris; the highest measurement authority for analytical chemical measurements).The result for the lead amount content k(Pb) and the corresponding expanded uncertainty U given by our laboratory was:k(Pb)=1.329 x 10-10mol g-1 (amount content of lead in wine)U[k(Pb)]=1.0 x 10-12mol g-1 (expanded uncertainty U=kxuc, k=2)The uncertainty of the main influence parameter of the combined measurement uncertainty was determined to be the isotope amount ratio R(206,B) of the blend between the enriched spike and the sample. 相似文献
2.
García-Ruiz S Moldovan M Fortunato G Wunderli S García Alonso JI 《Analytica chimica acta》2007,590(1):55-66
In order to evaluate alternative analytical methodologies to study the geographical origin of ciders, both multi-elemental analysis and Sr isotope abundance ratios in combination with multivariate statistical analysis were estimated in 67 samples from England, Switzerland, France and two Spanish regions (Asturias and the Basque Country). A methodology for the precise and accurate determination of the 87Sr/86Sr isotope abundance ratio in ciders by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) was developed. Major elements (Na, K, Ca and Mg) were measured by ICP-AES and minor and trace elements (Li, Be, B, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, Sn, Sb, Cs, Ba, La, Ce, W, Tl, Pb, Bi, Th and U) were measured by ICP-MS using a collision cell instrument operated in multitune mode. An analysis of variance (ANOVA test) indicated that group means for B, Cr, Fe, Ni, Cu, Se, Cd, Cs, Ce, W, Pb, Bi and U did not show any significant differences at the 95% confidence level, so these elements were rejected for further statistical analysis. Another group of elements (Li, Be, Sc, Co, Ga, Y, Sn, Sb, La, Tl, Th) was removed from the data set because concentrations were close to the limits of detection for many samples. Therefore, the remaining elements (Na, Mg, Al, K, Ca, Ti, V, Mn, Zn, As, Rb, Sr, Mo, Ba) together with 87Sr/86Sr isotope abundance ratio were considered for principal component analysis (PCA) and linear discriminant analysis (LDA). Finally, LDA was able to classify correctly 100% of cider samples coming from different Spanish regions, France, England and Switzerland when considering Na, Mg, Al, K, Ca, Ti, V, Mn, Zn, As, Rb, Sr, Mo, Ba and 87Sr/86Sr isotope abundance ratio as original variables. 相似文献
3.
电感耦合等离子体质谱法测定水泥样品中的铅同位素比值 总被引:4,自引:0,他引:4
研究和讨论了用电感耦合等离子体质谱仪(ICP—MS)测定铅的同位素比值测定时,影响测试结果的准确度和精密度的主要因素及其优化过程。在优化后的仪器分析条件下,测定5μg/L的NIST SRM981自然丰度铅同位素标准溶液的各对铅同位素比值,获得的^207Pb/^206Pb分析精度可优于0.1%。在该条件下测定了14个不同的水泥粉样品中的铅同位素比值,结果显示:铅的同位素比值分析技术可以用来示踪环境监测样品的铅污染源。 相似文献
4.
Improving boron isotope ratio measurement precision with quadrupole inductively coupled plasma-mass spectrometry 总被引:2,自引:0,他引:2
Assad Al-Ammar Eva Reitznerov Ramon M. Barnes 《Spectrochimica Acta Part B: Atomic Spectroscopy》2000,55(12):1861-1867
A method was developed to improve the precision of inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) for the determination of boron isotope ratios (11B/10B) in various environmental materials including seawater. This approach is based on the common analyte internal standardization (CAIS) chemometric algorithm. The sample solution obtained after digestion is spiked with lithium, and both 7Li/6Li and 11B/10B values are measured using long-counting periods (20 min). The CAIS algorithm corrects the measured 11B/10B values for (a) statistical fluctuations resulting from short-term noise; (b) drift in 11B-to-10B ratio as a result of long-term deviation in instrumental parameters likely to occur during long counting times; (c) change in 11B-to-10B ratio caused by variation in matrix elements concentrations; and (d) drift in mass bias correction factor. Comparing boron isotopic ratios in seawater measured by conventional and the new isotope ratio methods validates the procedure. A synthetic isotopic mixture of boron SRM 951 and enriched 10B SRM 952 also was examined. The CAIS method provided a measured boron isotopic ratio precision of 0.05% R.S.D. while eliminating 5.1% matrix concentration error and 0.25% instrumental drift error. 相似文献
5.
Patrick J. A. Hill Neil R. Banerjee Arshad Ali Iffat Jabeen Gordon R. Osinski Fred J. Longstaffe 《Journal of mass spectrometry : JMS》2019,54(8):667-675
We present a procedure for the determination of the isotopic ratios of silicon and oxygen from the same aliquot of anhydrous silicate material. The sample is placed in a bromine pentafluoride atmosphere as it is heated with a CO2 laser system releasing silicon tetrafluoride and oxygen gasses. The oxygen gas is then purified to remove other reaction by‐products through several liquid nitrogen traps before being captured onto a molecular sieve and transferred to an isotope ratio mass spectrometer. The silicon tetrafluoride gas is then purified using a supplementary line by repeatedly freezing to ?196°C with liquid nitrogen and then thawing with an ethanol slurry at ?110°C through a series of metal and Pyrex traps. The purified gas is then condensed into a Pyrex sample tube before it is transferred to an isotope ratio mass spectrometer for silicon isotope ratio measurements. This system has silicon yields of greater than 90% for pure quartz, olivine, and garnet standards and has a reproducibility of ±0.1‰ (2σ) for pure quartz for both oxygen and silicon isotope measurements. Meteoritic samples were also successfully analyzed to demonstrate this system's ability to measure the isotopic ratio composition of bulk powders with precision. This unique technique allows for the fluorination of planetary material without the need for wet chemistry. Though designed to analyze small aliquots of meteoritic material (1.5 to 3 mg), this approach can also be used to investigate refractory terrestrial samples where traditional fluorination is not suitable. 相似文献
6.
7.
Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis 总被引:1,自引:0,他引:1
The analysis of variations in stable isotope composition is becoming an essential approach for evaluating enzymatic and abiotic reactions of organic contaminants in soils and aquatic systems. Different, sometimes complementary analytical techniques are currently used and developed to determine stable isotope ratios in individual organic compounds. Anticipating an increasing demand for compound-specific isotope analysis, this survey compiles information for choosing the most promising analytical approach to an isotope-related problem. To this end, we review the principles of instrumentation for compound-specific isotope analysis and show how they can be exploited to assess contaminant transformation processes. Using chlorinated solvents and triazine herbicides as illustrative examples, we discuss how the isotope-sensitive techniques impact the investigation of stable isotope fractionation in environmental chemistry and microbiology. 相似文献
8.
ICP-MS测定土壤中铅同位素比值及地域差异性比较 总被引:2,自引:0,他引:2
建立用HNO_3-H_2O_2-HF体系微波消解前处理样品,利用电感耦合等离子体质谱测定土壤中铅同住素比值的方法,探讨并优化了影响测试结果的两种干扰因素.该方法中~(207)Pb/~(206)Pb和~(208)Pb/~(206)Pb的短期测量稳定性RSD分别达到0.12%和0.13%,长期测量的偏差分别在0.002和0.01以内,样品测量的最佳范围是10~40μg/L.采用标样-样品交叉法测定了湖南、湖北、云南、贵州、河南、福建、辽宁7个省的48个地区土壤中的铅同位素比值,结合聚类分析和主成分分析比较了各省土壤中同位素分布的差异,初步探讨了利用~(207)Pb/~(206)Pb和~(208)Pb/~(206)Pb比较烟叶产区的可能性. 相似文献
9.
A total of 117 honeysuckle (Lonicera japonica Thunb.) samples from four major regions of production in China, including Fengqiu in Henan, Pingyi in Shandong, Julu in Hebei, and Xiushan in Chongqing, were analyzed to determine their geographical origin. δ13C, δ15N, and δ18O values were determined by isotope ratio mass spectrometry (IRMS), and the contents of 18 elements (Fe, Mn, Cu, Zn, K, Ca, Mg, Pb, Cd, Cr, As, Hg, Se, Sr, Ni, Co, B, and Mo) were measured by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Multivariate statistical analysis by analysis of variance (ANOVA), principal component analysis (PCA), and linear discriminant analysis (LDA) were performed. The results showed that there were very significant differences in the stable isotope ratios and elemental concentrations in honeysuckle based on geographical origin, with plants from each region having a unique fingerprint. Discriminant functions were established to distinguish the origin of honeysuckle using suitable indicators including Cd, Cr, As, Hg, Se, Co, Ni, Sr, Fe, δ13C, δ15N, and δ18O. Cross-validated cases of 95.7% were correctly classified. 相似文献
10.
Marek Tulej Anna Neubeck Andreas Riedo Rustam Lukmanov Valentine Grimaudo Niels F.W. Ligterink Magnus Ivarsson Wolfgang Bach Coenraad de Koning Peter Wurz 《Journal of mass spectrometry : JMS》2020,55(12)
Accurate isotope ratio measurements are of high importance in various scientific fields, ranging from radio isotope geochronology of solids to studies of element isotopes fractionated by living organisms. Instrument limitations, such as unresolved isobaric inferences in the mass spectra, or cosampling of the material of interest together with the matrix material may reduce the quality of isotope measurements. Here, we describe a method for accurate isotope ratio measurements using our laser ablation ionization time‐of‐flight mass spectrometer (LIMS) that is designed for in situ planetary research. The method is based on chemical depth profiling that allows for identifying micrometer scale inclusions embedded in surrounding rocks with different composition inside the bulk of the sample. The data used for precise isotope measurements are improved using a spectrum cleaning procedure that ensures removal of low quality spectra. Furthermore, correlation of isotopes of an element is used to identify and reject the data points that, for example, do not belong to the species of interest. The measurements were conducted using IR femtosecond laser irradiation focused on the sample surface to a spot size of ~12 μm. Material removal was conducted for a predefined number of laser shots, and time‐of‐flight mass spectra were recorded for each of the ablated layers. Measurements were conducted on NIST SRM 986 Ni isotope standard, trevorite mineral, and micrometer‐sized inclusions embedded in aragonite. Our measurements demonstrate that element isotope ratios can be measured with accuracies and precision at the permille level, exemplified by the analysis of B, Mg, and Ni element isotopes. The method applied will be used for in situ investigation of samples on planetary surfaces, for accurate quantification of element fractionation induced by, for example, past or present life or by geochemical processes. 相似文献
11.
Bin Xu Zhenghua Wang Dandan Gao Yaping Dong Wu Li 《International journal of environmental analytical chemistry》2013,93(3):291-301
The ICP-AES technique and experimental design were employed to precisely determine the content of strontium in high Ca/Sr ratio oil field brine of Qaidam basin (Qinghai province, western China). From the statistical analysis using six factor factorial, it was found that Ca2+ is the significant interfering element for the recovery of strontium. Accurate strontium content was derived by eliminating the interference contribution according to the influencing model. The experimental results indicate that, under optimal conditions, the ICP-AES method for strontium determination has low LOD and LOQ, and the precision and accuracy are good with the relatively standard deviation below 1% and recovery between 98.0%?~?105.0%. 相似文献
12.
Inductively coupled plasma mass spectrometry (ICP-MS) has now been developed for application to stable isotope tracer investigations of several minerals/trace elements. Use of this method for such purposes requires an understanding of a number of fundamental issues: analytical chemistry performance of the method of isotopic analysis, relationship of the level of enriched isotope administered to the subject with background level of the isotope already present, the issues of cost, and finally the specific details of the biological issues to be explored.In this paper, a brief discussion of these issues is presented. As an example, the discussion is presented in relation to selected aspects of metabolism of selenium, employing the three stable isotopes74Se,77Se, and82Se in the rat as the biological model.Analytical performance of hydride generation/ICP-MS is discussed for the required analyses of selenium isotopes. It is shown that for solutions containing 10 ng/ml Se of natural isotopic composition, optimized signal/background ratios greater than 40/1 can be obtained, resulting in worst-case detection limits (ng Se) of 2 (74Se), and 0.6 (77,82Se). The precision and accuracy of isotope ratio measurements for the method used routinely in biological studies is 1%. The accuracy of the method for quantitative isotopic analysis is compared with hydride generation/atomic absorption spectrophotometry (HG/AAS). The following results are given (g Se/g or ml; mean + 1 SD,n = 3–5; first HG/ICP-MS, second HG/AAS): SRM 1577a [bovine liver] 0.697 ± 0.002 versus 0.69 ± 0.01; human blood plasma 0.098 ± 0.001 versus 0.135 ± 0.008; human red cells 0.211 ± 0.002 versus 0.216 ± 0.012; and human urine 0.0473 ± 0.0003 versus 0.0489 ± 0.0003.An experiment is described with the rat to show the feasibility of the method for studies of selenium metabolism. Rats were placed on Se-free diet for eight weeks, given their Se requirements in the drinking water in the form of76SeO
3
2–
and a single-day (day 3) replacement of their water with that containing highly enriched74SeO
3
2–
. Isotopic analysis of carcass and selected organs revealed a high degree of isotopic enrichment with respect to74Se during the entire eight weeks of the experiment, indicating the feasibility of this approach for detailed investigations of selenium metabolism in the rat.Presented in part at the 1989 European Winter Conference on Plasma Spectrochemistry, Reutte, Austria 相似文献
13.
14.
Meija J Centineo G Ignacio Garcia Alonso J Sanz-Medel A Caruso JA 《Journal of mass spectrometry : JMS》2005,40(6):807-814
The fragmentation patterns of butyltin compounds (mono-, di-, and tributyltin) in an electron impact ion source were studied using an isotope pattern reconstruction algorithm with emphasis on isotope ratio measurements from molecular clusters. For this purpose, standards of natural tin isotope abundance and a (119)Sn-enriched mixture of the three compounds were both ethylated and propylated using sodium tetraalkylborates. The corresponding mass spectra of the various tetraalkyltin compounds prepared were obtained by GC/MS after their extraction with hexane.The results showed that pure interference-free molecular clusters were obtained only for certain R(3)Sn(+) ions where no isobaric overlap with R(2)SnH(+) ions occurred (e.g. BuEt(2)Sn(+) overlaps with Bu(2)SnH(+)). These ions are ideal candidates for accurate Sn isotope ratio measurements, while isotope pattern perturbing interferences are observed for other molecular fragments down to Sn(.)(+). Isotope pattern reconstruction algorithm thus can be used as an analytical tool to ensure the absence of molecular interferences--a requirement for accurate isotope ratio measurements from molecular clusters. The relevance of these studies for the determination of butyltin compounds in environmental samples by isotope dilution GC/MS is also discussed. 相似文献
15.
16.
Julien Malherbe Fanny Claverie Aitor Alvarez Beatriz Fernandez Rosario Pereiro John L. Molloy 《Analytica chimica acta》2013
Quantitative analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) remains challenging primarily due to the lack of appropriate reference materials available for the wide variety of samples of interest and to elemental fractionation effects. Isotopic dilution mass spectrometry (IDMS) is becoming the methodology of choice to address these issues because the different isotopes of an element represent near-perfect internal standards. In this work, we investigated the lithium borate fusion of powdered solid samples, including soils, sediments, rock mine waste and a meteorite, as a strategy to homogenously distribute, i.e. equilibrate the elements and the added isotopically enriched standards. A comparison of this methodology using two pulsed laser ablation systems (ArF* excimer and Nd:YAG) with different wavelengths as well as two ICP-MS instruments (quadrupole and double-focusing sector field) was performed. Emphasis was put on using standard equipment to show the potential of the proposed strategy for its application in routine laboratories. Cr, Zn, Ba, Sr and Pb were successfully determined by LA-ICP-IDMS in six Standard Reference Materials (SRMs) representing different matrices of environmental interest. Experimental results showed the SRM fused glasses exhibited a low level of heterogeneity (intra- and inter-sample) for both natural abundance and isotopically enriched samples (RSD <3%, n = 3, 1σ). A good agreement between experimental results and the certified values was also observed. 相似文献
17.
ABSTRACTThe focus of this study was to investigate differences in isotopic, elemental, and trace pesticide concentrations of wild and cultivated berries from Transylvania. To emphasize differences based on geographical origin, stable isotopic ratios of 2H/1H, 18O/16O, and 13C/12C were determined by isotopic ratio mass spectrometry. Elemental fingerprinting of berries was performed by inductively coupled plasma mass spectrometry. The determination of trace pesticides in berries was performed by gas chromatography–mass spectrometry. Differences between wild and cultivated berries were evaluated using multivariate statistical analysis. The results suggest that multielemental, isotopic, and trace pesticide fingerprinting is feasible for sample differentiation. 相似文献
18.
MeHg and inorganic Hg compounds were measured in aqueous media for isotope ratio analysis using aqueous phase derivatization,
followed by purge-and-trap preconcentration. Compound-specific isotope ratio measurements were performed by gas chromatography
interfaced to MC-ICP/MS. Several methods of calculating isotope ratios were evaluated for their precision and accuracy and
compared with conventional continuous flow cold vapor measurements. An apparent fractionation of Hg isotopes was observed
during the GC elution process for all isotope pairs, which necessitated integration of signals prior to the isotope ratio
calculation. A newly developed average peak ratio method yielded the most accurate isotope ratio in relation to values obtained
by a continuous flow technique and the best reproducibility. Compound-specific isotope ratios obtained after GC separation
were statistically not different from ratios measured by continuous flow cold vapor measurements. Typical external uncertainties
were 0.16‰ RSD (n = 8) for the 202Hg/198Hg ratio of MeHg and 0.18‰ RSD for the same ratio in inorganic Hg using the optimized operating conditions. Using a newly
developed reference standard addition method, the isotopic composition of inorganic Hg and MeHg synthesized from this inorganic
Hg was measured in the same run, obtaining a value of δ
202Hg = −1.49 ± 0.47 (2SD; n = 10). For optimum performance a minimum mass of 2 ng per Hg species should be introduced onto the column. 相似文献
19.
Isotope ratio measurements characterizing 202Hg/200Hg in NIST SRM 3133 Mercury Standard Solution were undertaken by multicollector inductively coupled plasma mass spectrometry
employing NIST SRM 997 Tl for mass bias correction by use of the slope and the intercept obtained from a natural logarithmic
plot of each session of measurements of 202Hg/200Hg against 205Tl/203Tl. The calculated value of 1.285333 ± 0.000192 (mean and one standard deviation, n = 40) for the mass bias corrected 202Hg/200Hg was then used for mass bias correction of other Hg isotope pairs. Ratios of 0.015337 ± 0.000011, 1.68770 ± 0.00054, 2.3056 ± 0.0015,
1.3129 ± 0.0013, 2.9634 ± 0.0038, and 0.67937 ± 0.0013 (expanded uncertainty, k = 2) were obtained for 196Hg/198Hg, 199Hg/198Hg, 200Hg/198Hg, 201Hg/198Hg, 202Hg/198Hg, and 204Hg/198Hg, respectively. Reduction of Hg(II) to Hg0 in solutions of SRM 3133 was then undertaken using SnCl2, NaBH4, UV photolysis in the presence of formic acid, and ethylation of Hg(II) using NaBEt4. These reactions induced significant isotope fractionation with maximum values of 1.17 ± 0.07, 1.08 ± 0.09, 1.34 ± 0.07, and
3.59 ± 0.09‰ (one standard deviation, 1SD, n = 5) for δ
202/198Hg relative to the initial isotopic composition in the solution following 85–90% reduction of the Hg by SnCl2, NaBH4, UV photolysis, and ethylation with NaBEt4, respectively. Mass-dependent fractionation was found to be dominant for all reduction processes.
Figure Mass dependence of fractionation for all samples from Hg fractionation experiments using NaBEt4. Solid lines are the theoretically predicted MDF based on δ′ 202/198
Hg using equation 7. Error bars displayed are one standard deviation of the mean of 5 measurements of each sample 相似文献
20.
汽油中痕量铅的电感耦合等离子体质谱法同位素比值分析 总被引:1,自引:0,他引:1
为建立汽油中痕量铅的等离子体质谱的同位素比值分析方法,考察使用了不同的样品处理手段处理汽油样品。结果表明,V(HNO3) V(H2O)=1 10体系萃取汽油,为汽油中同位素比值分析的最佳方法,其操作安全简单,方便快速,且灵敏度高,从而有效保证同位素比值分析的精确度。利用等离子体质谱仪对汽油中痕量铅的实际含量进行了分析,为配合城市大气铅污染来源调查工作提供了一种极为快速简捷、安全有效的手段。 相似文献