首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
This paper presents a new chiral separation technology: two-phase (O/W) recognition chiral extraction. Distribution behavior of α-cyclohexyl-mandelic acid enantiomers was studied in the extraction system with D(L)-isobutyl tartrate in 1,2-dichloroethane organic phase and β-CD derivatives in aqueous phase, and the influence of the kind and concentration of extractant and pH on extraction performance was investigated. The experimental results indicate that two-phase (O/W) recognition chiral extraction is of strong chiral separation ability. HP-β-CD, HE-β-CD and Me-β-CD have higher recognition ability for S-CHMA than that for R-CHMA, among which HP-β-CD has the strongest ability; whereas, D-isobutyl tartrate has reversed recognition ability for them. In the extraction system containing HP-β-CD and D-isobutyl tartrate, e.e.% of S-CHMA in aqueous phase reached 27.6% by one stage extraction, and the distribution ratio for R-CHMA(k R ) and for S-CHMA(k s ) and separation factor (α) are 2.44, 0.89 and 2.49, respectively. Meanwhile, pH and concentration of extractant have great effects on chiral separation ability. Two-phase (O/W) recognition chiral extraction has great significance for preparative separation of racemic compounds.  相似文献   

2.
《Tetrahedron: Asymmetry》2007,18(20):2399-2408
This paper reports a new chiral separation technology—biphasic recognition chiral extraction for the separation of aromatic acid enantiomers such as α-cyclohexyl-mandelic acid (CHMA) and naproxen (NAP). The biphasic recognition chiral extraction system was established by adding hydrophobic d(l)-isobutyl tartrate in 1,2-dichloroethane organic phase and hydrophilic β-cyclodextrin (β-CD) derivative in aqueous phase, which preferentially recognize the (R)-enantiomer and (S)-enantiomer, respectively. These studies involve an enantioselective extraction in a biphasic system, where aromatic acid enantiomers form complexes with the β-cyclodextrin derivative in the aqueous phase and d(l)-isobutyl tartrate in the organic phase, respectively. Factors affecting the extraction mechanism are analyzed, namely the influence of the concentrations of the extractants and aromatic acid enantiomers, the types of the extractants, pH, and temperature. The experimental results show that the biphasic recognition chiral extraction is of much stronger chiral separation ability than the monophasic recognition chiral extraction, which utilizes the cooperations of the forces of the tartrate and the β-CD derivative. Hydroxypropyl-β-cyclodextrin (HP-β-CD), hydroxyethyl-β-cyclodextrin (HE-β-CD), and methyl-β-cyclodextrin (ME-β-CD) have stronger recognition abilities for the (S)-aromatic acid enantiomers than those for (R)-aromatic acid enantiomers, among which HP-β-CD has the strongest ability. d-Isobutyl tartrate preferentially recognizes (R)-CHMA and (S)-NAP, while l-isobutyl tartrate preferentially recognizes (S)-CHMA and (R)-NAP. The maximum enantioselectivities of CHMA and NAP are 2.49 and 1.65, under conditions at which the pH values of the aqueous phases are 2.7 and 2.5, at the ratio of 2:1 of [isobutyl tartrate] to [HP-β-CD].  相似文献   

3.
Hydrophilic β-cyclodextrin (β-CD) and its derivatives are not soluble in organic liquids but they are highly soluble in water and can interact with enantiomers selectively to form diastereomeric complexes which enable their use as chiral selectors in chiral solvent extraction. In this paper, terbutaline enantiomers were extracted by hydrophilic β-CD derivatives in an aqueous/organic biphasic solvent system with racemic terbutaline in the organic phase and β-CD in the aqueous phase. Five β-CD derivatives, namely: methyl-β-cyclodextrin (Me-β-CD), hydroxyethyl-β-cyclodextrin (HE-β-CD), 2-hydroxyethyl-β-cyclodextrin (2-HE-β-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) and (4-sulfobutylether)-β-cyclodextrin (SBE-β-CD) were used as hydrophilic selectors, respectively. Process variables affecting extraction efficiency were investigated, namely influence of the type of organic solvents and β-CD derivatives, concentrations of selectors and terbutaline enantiomers, pH, and temperature. Experimental results show that the efficiency of extraction depends, often strongly, on process variables. All five β-CD derivatives studied preferentially extract the more biologically active (R)-terbutaline from the organic phase; HP-β-CD has the strongest recognition ability. The maximum enantioselectivity (α) of 1.42 was achieved under optimal conditions: pH 7.0 and temperature of 5°C. Utilization of the extraction method for separation of terbutaline enantiomers is expected to be cheap and easy to scale up to commercial scale.  相似文献   

4.
The solubility of risperidone (Risp) in aqueous buffered cyclodextrin (CD) solution was investigated for α-, β-, γ- and HP-β-CD. The effects of pH, ionic strength and temperature on complex stability were also explored. Neutral Risp tends to form higher order complexes (1:2) with both β- and HP-β-CD, but only 1:1 type complexes with α-, and γ-CD. The tendency of Risp to complex with cyclodextrins is in the order β-CD > HP-β-CD > γ-CD > α-CD. The 1:1 complex formation constant of Risp/HP-β-CD increases with increasing ionic strength in an opposite trend to the inherent solubility (S 0) of Risp, thus indicating significant hydrophobic effect. The hydrophobic effect contributes to the extent of 72% towards neutral Risp/HP-β-CD complex stability, while specific interactions contribute only 4.7 kJ/mol. Thermodynamic studies showed that 1:1 Risp/HP-β-CD complex formation is driven by a favorable enthalpy change (ΔH 0=−31.2 kJ/mol, ΔS 0=−7 J/mol.K) while the 1:2 complex is largely driven by entropy changes (ΔH 0=−5.0 kJ/mol, ΔS 0=42 J/mol.K). Complex stability was found to vary with pH, with a higher formation constant for neutral Risp. Molecular mechanical computations using MM (atomic charges and bond dipole algorithms) and Amber force fields, which were carried out to explore possible sites of interactions between Risp and CDs and to rationalize complex stoichiometry, produced similar results concerning optimal inclusion complex geometries and stoichiometries.  相似文献   

5.
The interaction of two benzocycloheptanes namely, pizotifen (Pizo) and ketotifen (Keto), with cyclodextrins (CDs: α-, β-, γ-, and HP-β-CDs) has been investigated by several techniques including phase solubility, X-ray powder diffractometry, 1H-nuclear magnetic resonance and molecular mechanical modeling. The effects of CD type, pH, ionic strength and temperature on complex stability were also explored. The complex formation constant (K 11) values for the Pizo/CD system follows the decreasing order β-CD > γ-CD > HP-β-CD > α-CD. However, for the Keto/CD system it follows the decreasing order γ-CD > β-CD > HP-β-CD > α-CD. The tendency of Pizo and Keto to complex with β-CD is driven to the extent of 70% by the hydrophobic effect. Complex formation of Keto and Pizo was substantially driven by entropy (>100 J⋅mol−1⋅K−1) but slightly retarded by enthalpy (3–8 kJ⋅mol−1). 1H-NMR and MM+ studies indicate multimodal inclusion of the methylpiperadine, thiophene and phenyl moieties into the β-CD cavity.  相似文献   

6.
A simple and low-cost method using liquid?Cliquid extraction coupled with complexation reactive technique has been developed for enantioselective separation of naproxen enantiomers. Three kinds of modified ??-cyclodextrins including methyl-??-cyclodextrin (Me-??-CD), hydroxyethyl-??-cyclodextrin (HE-??-CD) and hydroxypropyl-??-cyclodextrin (HP-??-CD), were selected as hydrophilic chiral selectors for extraction naproxen from organic phase to aqueous phase. A systematic study of the factors affecting chiral separation performance were investigated. The experiment results obtained show that, HP-??-CD, HE-??-CD and Me-??-CD has stronger recognition abilities for S-naproxen than those for R-naproxen. Among the ??-CD derivatives studied, HP-??-CD has the strongest ability for chiral recognition and separation. Excellent enantioselectivity (a) of 1.59 is obtained under the optimal conditions of pH of 2.5 and temperature of 5 °C.  相似文献   

7.
Tang  Kewen  Song  Litao  Pan  Yang  Jiang  Xinyu  Miao  Jiabing 《中国化学》2010,28(1):119-124
Enantioselective partitioning of ibuprofen enantiomers in a biphasic recognition chiral extraction system was studied. A combination of hydrophobic L‐isobutyl tartrate in organic phase and hydrophilic β‐cyclodextrin derivative in aqueous phase is necessary to establish a biphasic recognition chiral extraction system. The studies performed involve an enantioselective extraction in a biphasic system, where ibuprofen enantiomers form four complexes with the β‐cyclodextrin derivative in aqueous phase and the D(L)‐isobutyl tartrate in organic phase, respectively. In these biphasic resolutions, the types and the concentrations of the extractants, pH and temperature all exert a considerable influence on the biphasic recognition process. Good enantioselectivities for ibuprofen enantiomers were obtained at pH≦2.5 and a ratio of 2:1 of [L‐isobutyl tartrate] to [HP‐β‐CD]. Biphasic recognition chiral extraction is of strong chiral separation ability, and may be very helpful to optimize the extraction systems and realize the large‐scale production of enantiomers.  相似文献   

8.
Summary The chiral separation of two newly synthesized arylpropionic acids of pharmaceutical interest, namely 2-[(5′-benzoil-2′-hydroxy)phenyl]-propionic acid (DF-1738y) and 2-[(4′-benzoiloxy-2′-hydroxy)phenyl]-propionic acid (DF-1770y), was performed by Capillary Zone Electrophoresis (CZE) using either cyclodextrins or antibiotics as chiral selectors in coated capillary. In order to optimize the separation, the effect on the migration time and resolution of type and concentration of the chiral selector, the buffer pH and the capillary temperature were studied. Several cyclodextrins, namely the charged 6A-monomethylamino-β-cyclodextrin (MeNH-β-CD) and the neutral methyl-β-cyclodextrins (M-β-CD) and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD), were tested for the enantiomeric separation of aryl propionic acids (APAs) compounds. Of these TM-β-CD provided the highest enantiomeric resolution at pH 5, however only DF-1738y optical isomers were baseline resolved. Using background electrolytes (BGEs) at higher pHs (pH=6–7) supported with the above listed CDs, an enantioresolution increase was recognized only for compound DF-1738y. In contrast DF-1770y exhibited the highest resolution at the lowest pH value studied (pH 4). The macrocyclic antibiotic vancomycin was therefore added to the BGE and tested as chiral selector using the partial filling counter current mode in order to obtain a sensitive analysis, high resolution and reduced antibiotic adsorption on the capillary wall. 5 mM vancomycin dissolved in the BGE at pH 5 and 25°C provided relatively high enantiomeric resolution (R DF-1738y=3.4,R DF-1770y=2.22) of both compounds.  相似文献   

9.
In the past decade, ionic liquids have received great attention owing to their potential as green solvent alternatives to conventional organic solvents. In this work, hydrophobic achiral ionic liquids (1-butyl-3-methylimidazolium-hexafluorophosphate([bmim][PF6]), 1-octyl-3-methylimidazolium tetrafluoroborate([omim][BF4])) were used as solvents in chiral liquid-liquid extraction separation of mandelic acid (MA) enantiomers with β-cyclodextrin (β-CD) derivatives as hydrophilic chiral selectors preferentially forming complexes with (R)-enantiomers. Factors affecting the separation efficiency were optimised, namely the type of the extraction solvents and β-CD derivatives, concentrations of the β-CD derivatives and MA enantiomers, pH, and temperature. Excellent enantioseparation of MA enantiomers was achieved in the ionic liquid aqueous two-phase extraction systems under the optimal conditions of pH 2.5 and temperature of 5°C with the maximum enantioselectivity (α) of 1.74. The experimental results demonstrated that the ionic liquid aqueous two-phase extraction systems with a β-CD derivative as the chiral selector have a strong chiral recognition ability, which might extend the application of ionic liquids in chiral separation.  相似文献   

10.
This paper presents a biphasic recognition chiral extraction system developed as a new chiral separation technology for the separation of pantoprazole enantiomers, combining a hydrophilic β-CD derivative in the aqueous phase and a hydrophobic tartaric acid in the organic phase which preferentially recognise the (R)-enantiomer and (S)-enantiomer, respectively. In this study, a number of factors which influence the efficiency of the extraction were investigated including types of organic solvents, β-CD and tartaric acid esters and their concentrations, pH and temperature. As a result, enantioselectivity for pantoprazole enantiomers can be improved up to 1.42 under optimised conditions; in addition, it is clear that the combined action of β-CD and tartaric acid esters leads to formation of the biphasic chiral extraction system with a stronger separation capacity than a monophasic chiral extraction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号