首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
平行光管是光学实验室常用的光学精密仪器,通过光源照射靶标模拟无穷远目标,是光学系统装调、测试必需的设备.设计了一个有效口径为200 mm、焦距为5000 mm的平行光管,采用离轴两反射式系统结构,视场角为0.35°,主次镜都为非球面,次镜为凸双曲面,系统中心视场波像差设计值达到1/62λ,边缘视场波像差设计值达到1/2...  相似文献   

2.
星载紫外全景探测仪已成为空间大气遥感领域的迫切需求,根据天底和临边同时探测的研究目标,提出了一种天底视场和临边视场共像面的全新紫外全景探测仪光学系统结构,设计了一个中心波长360nm、带宽20nm、中心视场10°、环形视场360°×(70.31°~72.71°)、焦距5mm、相对孔径1/3.3的全景探测仪光学系统.利用光学系统的畸变增加边缘视场的能量,同时利用光阑像差产生的有效像差渐晕来提高边缘视场的像面照度,边缘视场的相对照度达到98%以上.将天底视场光路和临边视场光路建立多重结构,利用ZEMXA-EE软件的多重结构优化功能同时优化设计天底视场光路和临边视场光路,设计结果表明,天底和临边视场的光学传递函数均大于0.6@38.5lp/mm,满足设计指标要求,且体积和质量小,适合空间应用.  相似文献   

3.
自由曲面具有良好的像差矫正能力,但没有足够的初始结构供设计者参考,因此研究自由曲面初始结构的设计方法是有意义的.通常初始结构设计方法为大量点和光线的追迹或数值求解微分方程组,运算量大且复杂。文章从光学系统对光波变换的角度出发,推导自由曲面解析表达式,并设计一款工作波段较宽,相对口径较大的离轴红外光学系统,工作波段3~12μm,焦距300mm, F/2.5,视场角2.04°×2.56°,像质接近衍射极限且100%冷光阑效率,全视场波像差RMS值平均为0.059λ@3.67μm.  相似文献   

4.
设计了一个大扫描视场的折衍混合红外共形光学系统,共形成像系统工作波段为3.7~4.8 m,相对孔径为1/2,焦距为120 mm,扫描视场为40。由于共形光学系统具有大偏心、大倾斜光学特性,像差校正难度较大,设计中采用固定校正镜和折衍混合混合结构校正了共形光学元件的像差,引入了非球面和衍射面有效消除了各个扫描视场的像差。设计结果表明:光学系统光阑与探测器冷光阑重合,满足100%冷光阑效率。在40扫描视场范围内,共形光学系统的光学传递函数曲线接近衍射极限,成像良好。  相似文献   

5.
遥感测绘应用要求光学系统焦距长、幅宽大、畸变低、体积小,并且可以实现与卫星平台的一体化设计。经过结构优选,采用改进型同轴三反结构,同时实现了长焦距、大幅宽和低畸变。由于二次遮拦和大视场的影响,一般的非球面优化设计成像质量不能满足要求。自由曲面的加入有效地增加了光学系统优化的自由度,经过优化设计后,光学系统设计传递函数大于0.418(72lp/mm),最大相对畸变小于0.00145%,光学系统成像质量明显提高。利用计算全息(CGH)技术实现了自由曲面的检测与精磨加工,设计残余波像差均方根(RMS)值为0.007λ,峰谷(PV)值为0.027λ,满足自由曲面的面形公差要求。加工、装调后实测光学系统的实验室静态传递函数,弧矢方向最低静态传递函数为0.225(72lp/mm),满足系统技术指标要求。  相似文献   

6.
变形光学系统在X方向和Y方向有不同的焦距,物方视场的横纵比不再受探测器光接收面形状限制,可以在一个方向上扩大视场或提高目标分辨率而不影响另外一个方向。研究了无遮拦三反射镜变形光学系统的设计方法,利用Zernike像差分析方法分析变形系统的像差特点,使用具有双曲率的Biconic Zernike曲面作为反射面校正系统像差。设计了一个X方向焦距fx为100mm,Y方向焦距fy为150mm,F数为2,视场为3.3°×1.65°的致冷型中波红外光学系统。探测器的横纵比为4…3,物方视场横纵比为2…1。该系统全视场范围内的调制传递函数在奈奎斯特频率处(33lp/mm)高于0.61。三个反射面及整个光学系统均关于YZ平面对称。设计结果表明,该系统能够改变物方视场的横纵比,增大了X方向的视场,结构紧凑,成像质量良好。  相似文献   

7.
光学系统是测风激光雷达小型化的关键,光学设计的质量直接影响系统的整机性能。提出了一种全光纤多路收发非扫描多普勒测风激光雷达系统方案,对其工作原理作了简要介绍;在对激光雷达系统信噪比开展理论分析的基础上,提出了光学天线的视场、孔径、焦距等设计参数,并利用光学设计软件对光学天线进行了设计和仿真实验。该系统工作波长为1064nm,设计结果表明,光学天线相对口径为1∶4.28,全视场角为20°×22.5°,总长为277mm,后截距127.28 mm,有效焦距300 mm,口径70 mm,各视场光纤耦合效率均在65%以上,满足设计指标要求。  相似文献   

8.
针对高分辨率、宽覆盖面积、全天时海洋目标的红外侦察与搜索需求,设计了一种大口径、长焦距的同轴折反射式中波红外光学系统。其工作轨道高度为1200km,波段为3.7~4.8μm,星下点地面像元分辨率优于10m。通过分析计算确定系统焦距为3000mm,相对孔径为1…4。采用镜头前组摆扫方式实现了视场角14.203°,地面覆盖宽度为300km。利用调焦机构在10℃~30℃温度范围内主动消热差,在奈奎斯特频率21lp/mm处全视场调制传递函数(MTF)大于0.39,接近衍射极限。实现了100%冷光阑匹配以抑制系统自身的杂散辐射。设计结果表明,该系统各项性能指标和结构的可实现性均满足要求。  相似文献   

9.
对于长波红外长焦距光学系统,大孔径能使系统具有更好的成像亮度,但也带来了孔径边缘像差较大且难以校正的问题。利用折反射式结构减少光学系统总长,采用两块反射镜结构作为基础,在其后搭配一组校正折射透镜构成光学系统,并应用光焦度分配、消热差及消色差条件,设计出大孔径、长焦距的长波红外无热化光学系统。该光学系统工作波段为8~12μm,焦距为800 mm,全视场角为0.6°,F数为2.5,遮拦比为0.2,光学系统总长为344.62 mm;在-40~60℃工作温度范围内,全视场角的调制传递函数值在奈奎斯特频率20 lp/mm处均大于0.25。设计的长波红外大孔径长焦距光学系统由2块反射镜和4块折射透镜组成,系统结构紧凑,成像性能稳定,可为类似此类光学系统设计提供参考。  相似文献   

10.
为了在室内检测光电测试设备在某种工况下的瞄准线稳定精度、稳定器稳定精度等指标,需通过平行光管来提供无穷远目标。设计指标要求为:采用透射式结构,工作波段400~700nm,D=350mm,焦距为2.8m,视场角为3.5°,全视场内实现复消色差。设计采用柯克三片分离式透镜作为初始结构形式,根据宽光谱复消色差理论,选取玻璃材料,利用校正光学系统色差与二级光谱的条件计算各片透镜的光焦度,求解光学系统初始结构;根据大口径宽光谱平行光管像差要求,引入色球差参数以及消二级光谱参数进行优化,通过玻璃材料匹配,实现复消色差。设计结果:在不引入非球面的情况下,系统接近理论衍射极限,全视场波像差RMS值均优于λ/22,全视场内实现了复消色差,满足设计指标要求。  相似文献   

11.
薛庆生  王淑荣  陈伟 《光子学报》2014,42(4):456-461
为满足空间遥感的迫切需求,设计并研制了一个星载均匀像面低畸变广角气溶胶探测仪样机.该仪器通过利用光阑像差产生的有效像差渐晕提高像面照度的均匀性,解决了广角系统中像面照度不均匀的问题.合理选择结构型式校正了畸变,并且采用全球面光学系统,易于加工和检测.广角气溶胶探测仪的中心波长为670 nm,带宽20 nm,全视场72°,相对孔径1/3.6,焦距20 mm.实验结果表明:研制的星载广角气溶胶探测仪镜头其入瞳大小5.6 mm,边缘视场的相对照度达到95.6%,在36 lp/mm处,轴上视场的调制传递函数值大于0.61,轴外视场的调制传递函数值高于0.58,最大畸变量为-1.95%,完全满足设计指标要求,体积小,适合空间遥感应用.  相似文献   

12.
长焦距、大视场空间观测相机光学系统设计   总被引:1,自引:0,他引:1  
为了解决空间相机高分辨率与大视场的难题,在共轴三反的基础上,通过对以往离轴三反系统改进设计,提出了一种长焦距、大视场、大相对孔径无中心遮拦的离轴三反系统设计方法,并利用ZEMAX软件设计了一种焦距为1200mm,视场角11°×3°,相对孔径F/4,工作谱段在0.4~2.5μm的光学系统,该系统在全视场空间频率50lp/mm处,MTF均值大于0.42,接近衍射极限,弥散斑直径RMS值小于10μm,表明其具有良好的成像质量。  相似文献   

13.
一种新型离轴三反式光学系统的设计   总被引:7,自引:6,他引:7  
在三反射镜光学系统的几何光学理论的基础上,设计了一个焦距f=1000 mm,相对孔径D/f=1/4,视场角2w=3°的离轴非球面三镜反射系统,讨论了优化方法和各参量对系统结构和像差的影响.  相似文献   

14.
李松岩  梁秀玲 《应用光学》2020,41(2):276-281
对于长焦距摄远光学系统,大相对孔径意味着成像亮度更加优秀,但是也伴随着孔径边缘像差变差而难以校正的难题。利用折反系统减小光学系统总长,采用反射结构为基础,搭配前后两组校正镜构成光学系统,设计出大相对孔径,总长较短的摄远光学系统。光学系统工作波段为可见光波段,焦距1 000 mm,F数2.1,摄远比0.52,光学总长远小于焦距,遮拦比45%,全视场MTF在空间频率80 lp/mm处大于0.3,像面直径11 mm。该光学系统镜片全部采用球面镜,光学系统由2片反射镜和7片透射镜组成,结构紧凑,成像质量好。对摄远物镜进行公差分析,得出该设计公差较宽松。  相似文献   

15.
李岩  张葆  洪永丰 《应用光学》2014,35(3):391-394
基于同轴三反射光学系统基本原理,将孔径光阑和视场适当偏心,设计了一个灵巧型多光谱离轴三反光学系统,系统焦距1 200 mm,并对设计结果进行了像质评价。实验结果表明:系统在可见波段(0.486 m ~0.656 m)80 lp/mm空间频率下MTF0.5,中波波段(3 m ~5 m)15 lp/mm空间频率下MTF0.35,全波段范围内最大RMS为2.096 m。系统中面型采用二次非球面,且整个系统仅有孔径光阑偏心,3个反射镜位置均无偏心和倾斜,降低了加工成本及装调难度。  相似文献   

16.
白虎冰  缪礼 《应用光学》2018,39(5):644-649
为了实现大口径长焦距的变焦光学系统在光电跟踪设备的需求,通过对变焦原理的分析与计算,进而确定出合适的初始结构。通过分析比较,确定采用机械补偿变焦型来实现整个变焦系统。整个系统需要设计实现100 mm~600 mm的连续变焦,同时保证其F数不发生变化,同时由于孔径较大,且焦距变化范围比较长,因此设计难度比较大。通过优化设计得到结果,该系统的设计结果表明整个系统的总长达到了563.956 mm,F数基本保持不变,这样在实际的应用中该系统可以实现远距离的成像。系统在中长焦距时,其MTF值在30 lp/mm处都大于0.4,在短焦时性能略有下降,对于实际应用满足要求。  相似文献   

17.
分析了水下超广角成像光学系统的设计特点。基于鱼眼镜头结构,设计了相对孔径为1/2,水下全视场为105°,焦距为6.8mm,光谱响应范围为可见光波段,采用同心球面罩的水下光学系统。该系统在空气中的全视场MTF在空间频率40lp/mm时均高于0.8;在水中时,在40lp/mm时,均高于0.4,能够满足水下光学系统对整个半球空域海空目标成像的要求。  相似文献   

18.
离轴三反红外双波段景象模拟器光学系统设计   总被引:3,自引:2,他引:1       下载免费PDF全文
杨乐  孙强  郭邦辉 《应用光学》2011,32(6):1212-1216
 针对红外双波段成像系统性能测试与评估的应用需求,设计了3 μm~5 μm和8 μm~12 μm红外双波段视景仿真用离轴三反光学系统。在共轴三反光学系统成像理论基础上,分析了孔径光栏远离主镜的离轴三反系统像差特性,研究了大出瞳距、大相对孔径条件下离轴三反光学系统的结构设计和像差平衡方法。系统焦距为330 mm,F#为3,视场为6°×4.5°,出瞳距为750 mm,在空间频率10 lp/mm 处,中波红外MTF>0.65,长波红外MTF>0.4,接近衍射极限。具有大视场、大出瞳距、高分辨率、结构紧凑等特点。  相似文献   

19.
星载超广角气溶胶探测仪均匀像面性光学设计   总被引:4,自引:4,他引:0  
薛庆生 《光子学报》2012,41(1):15-20
为满足空间遥感的迫切需求,设计了星载低畸变超广角气溶胶探测仪系统.系统中多光谱成像仪的光谱范围为0.860~0.965 μm,全视场角为94°,相对孔径为1∶4,采用反远距结构,系统后工作距离为42 mm.根据反远距结构的像差特点,提出了合理选用易于加工的二次曲面校正畸变,并利用光阑像差产生的有效像差渐晕改善像面照度分布设计方法.运用光学设计软件CODE V和ZEMAX对气溶胶探测仪光学系统进行了光线追迹和优化并对设计结果进行了分析.结果表明,最大畸变为-1.6%,像面上边缘视场的照度大于中心视场照度的46%,光学系统在奈奎斯特频率38.5 lp/mm处的光学传递函数均达到0.59以上,完全满足设计指标要求;体积小,适合空间遥感应用;同时证明了设计方法是可行的.  相似文献   

20.
共轴偏光瞳宽视场折轴三反射光学系统设计   总被引:2,自引:1,他引:1  
李旭阳  马臻  李英才 《应用光学》2009,30(4):542-546
共轴偏光瞳系统克服了共轴系统视场角有限,离轴系统加工和装配困难等缺点,能更好满足空间对地观测等领域的要求.由共轴三反系统求解共轴偏光瞳无遮拦三反射镜光学系统的初始结构参数,设计了焦距为3 000 mm,F数为10的共轴偏光瞳的三反射光学系统.设计结果表明:该系统视场角达8°×0.8°,空间频率50 lp/mm,调制传递函数值均大于0.55,接近衍射极限,满足系统对成像质量的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号