首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
Coordination Properties of Carbaboranylchlorophosphines: Synthesis and Molecular Structure of cis-rac -Molybdenumtetracarbonyl{1,2-bis(chlorophenylphosphino)-1,2-dicarba-closo-dodecaborane(12)} Rac-1,2-bis(chlorophenylphosphino)-1,2-dicarba-closo-dodecaborane(12) ( 1 ) reacts with [Mo(CO)4(NBD)] (NBD = norbornadiene) after several hours at 50–55 °C to yield cis-rac-[Mo(CO)4{1,2-(PPhCl)2C2B10H10}] ( 2 ). 2 was characterised spectroscopically (1H, 13C, 11B and 31P NMR) and by crystal structure determination.  相似文献   

2.
Five crystalline 2-(dimethylsila)pyrimidine derivatives (Z) have been prepared in excellent 14 or satisfactory 5 yield and characterised. The source of each was ultimately Li[CH(SiMe2R)(SiMe2OMe)] [R = Me (B) or OMe (I)]. Compound 1 (Z with Ar = Ph, X = SiMe3, n = 1) was obtained from Z [with Ar = Ph, X = Li(OEt2), n = 4; previously isolated from B [P.B. Hitchcock, M.F. Lappert, X.-H. Wei, J. Organomet. Chem. 689 (2004) 1342]] and Me3SiCl. The potassium salt 2 [Z with Ar = C6H4But-4; X = K(thf)3, n = 2] was made from K[CH(SiMe3)(SiMe2OMe)] (C) (via B) and 4-ButC6H4CN. Treatment of 2 with 1,2-dibromoethane afforded 3 (Z with Ar = 4-ButC6H4; X = H, n = 1); which when reacted with successively n-butyllithium and Me3SiCl produced 4 (Z with Ar = 4-ButC6H4, X = SiMe3, n = 1). Compound 5 [Z with Ar = 4-ButC6H4, X = Li(hmpa)2, n = 1] resulted from I with 4-ButC6H4CN and then OP(NMe2)3 (≡ hmpa). Plausible reaction pathways from the appropriate alkali metal alkyl C or I to 2 or 5, respectively, are suggested; these involve regiospecific 1,3-migrations of SiMe2OMe from C → N and electrocyclic loss of Me3SiOMe or SiMe2(OMe)2, respectively. The X-ray structures of crystalline 1, 2 and 5 are presented.  相似文献   

3.
1,2-Diphosphaferrocenes as Ligands in Transition Metal Complexes. X-Ray Structure Analysis of [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}] Reaction of metallo-1,2-diphosphapropene (η5-tBuC5H4)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 with (Z-cyclooctene)Cr(CO)5 afforded the pentacarbonylchromium adduct of a 1,2-diphosphaferrocene [(η5-tBuC5C5H4){η5-1-[Cr(CO)5]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 1 c ). Diphosphaferrocene [(η5-tBuC5H4){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 c ) was formed when (η5-tBuC5H4)(CO)2FeBr was treated with (Me3Si)2P? P?C(SiMe3)2 in toluene at 60°C. Photolysis of molybdenum- and tungsten hexacarbonyl in the presence of [(η5-1,3-tBu2C5H3){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 b ) gave the pentacarbonylmetal adducts 8 (M = Mo) and 9 (M = W), respectively. A corresponding manganese derivative resulted from the photochemical reaction of 2 b and (MeC5H4)Mn(CO)3. Treatment of 2 b with Co2(CO)8 yielded trinuclear [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 11 ). Constitution and configuration of compounds 1 c, 2 c, 8 – 11 were determined by elemental analyses and spectra (IR, 1H-, 13C-, 31P-NMR, MS). In addition the molecular structure of 11 was established by single crystal X-ray analysis.  相似文献   

4.
The aminoalcohols 1-HOCR2-2-NMe2C6H4 [R = Ph (1), R = C6H11 (2)] and 1-HOCPh2CH2-2-NMe2C6H4 (3) react with ZnCl2 in tetrahydrofuran to give the alcohol adducts [ZnCl2(THF){1-HOCR2-2-NMe2C6H4}] [R = Ph (4), R = C6H11 (5)] and [ZnCl2(THF){1-HOCPh2CH2-2-NMe2C6H4}] (6). The complexes 46 were characterized by 1H and 13C NMR spectroscopy, and 5 was also structurally characterized by X-ray crystallography.  相似文献   

5.
Reaction of [MX(CO)2(η7-C7H7)] (M=Mo, X=Br; M=W, X=I) with two equivalents of CNBut in toluene affords the trihapto-bonded cycloheptatrienyl complexes [MX(CO)2(CNBut)2(η3-C7H7)] (1, M=Mo, X=Br; 2, M=W, X=I). The X-ray crystal structure of 2 reveals a pseudo-octahedral molecular geometry with an asymmetric ligand arrangement at tungsten in which one CNBut is located trans to the η3-C7H7 ring. Treatment of 2 with tetracyanoethene results in 1,4-cycloaddition at the η3-C7H7 ring to give [WI(CO)2(CNBut)2{η3-C9H7(CN)4}], 3. The principal reaction type of the molybdenum complex 1 is loss of carbonyl and bromide ligands to afford substituted products [MoBr(CNBut)2(η7-C7H7)] 4 or [Mo(CO)(CNBut)2(η7-C7H7)]Br. Reaction of [MoBr(CO)2(η7-C7H7)] with one equivalent of CNBut in toluene at 60°C affords [MoBr(CO)(CNBut)(η7-C7H7)], 5, which is a precursor to [Mo(CO)(CNBut)(NCMe)(η7-C7H7)][BF4], 6, by reaction with Ag[BF4] in acetonitrile. In contrast with the parent dicarbonyl systems [MoX(CO)2(η7-C7H7)], complexes of the Mo(CO)(CNBut)(η7-C7H7) auxiliary, 5 and 6, do not afford observable η3-C7H7 products by ligand addition at the molybdenum centre.  相似文献   

6.
The asymmetric unit of the title complex, [PtCl2(C14H38B10P2)]·0.5CH2Cl2 or cis‐[PtCl2{1,2‐(PiPr2)2‐1,2‐C2B10H10}]·0.5CH2Cl2, contains one disordered solvent mol­ecule and two mol­ecules of the complex, in which each PtII atom displays slightly distorted square‐planar coordination geometry. The P atoms connected to the cage C atoms are coordinated to the PtII atom. The Pt—P distances vary slightly [2.215 (3) and 2.235 (4) Å] and the Pt—Cl distances are equal [2.348 (3) and 2.353 (5) Å].  相似文献   

7.
The heterometallic cluster complexes {(p-Cymene)Ru[S2C2(B10H10)]}Mo(CO)2{(CO)3Ru[S2C2(B10H10)]} (2) and {(p-Cymene)Ru[Se2C2(B10H10)]}2Mo(CO)2 (3) (p-Cymene = η6-4-isopropyl-toluene) have been synthesized from the reactions of 16-electron half-sandwich ruthenium 1,2-dichalcogenolate carborane complexes (p-Cymene)Ru[E2C2(B10H10)] (E = S(1a), Se(1b)) with Mo(CO)3(Py)3 in the presence of BF3 · Et2O. The complexes of 2 and 3 were characterized by elemental analysis and IR, NMR spectra. The molecular structure of 2 has been characterized by single-crystal X-ray diffraction analysis. Complex 2 is unsymmetrical and the two Ru–Mo single bonds (2.7893(14), 2.8189(13) Å) are each supported by a symmetrically bridging o-carborane-1,2-dithiolato ligand.  相似文献   

8.
Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine, P(C4H3O)3, at 40 °C in the presence of a catalytic amount of Na[Ph2CO] furnishes two triruthenium complexes [Ru3(CO)10{P(C4H3O)3}2] (1) and [Ru3(CO)9{P(C4H3O)3}3] (2) with the ligand coordinated through the phosphorus atom. Treatment of 1 and 2 with Me3NO at 40 °C affords the dinuclear phosphido-bridged complexes [Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}] (3) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}] (4), respectively, that are formed via phosphorus–carbon bond cleavage of a coordinated phosphine followed by coordination of the dissociated furyl moiety to the diruthenium center in a σ,π-alkenyl mode. Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine in refluxing benzene gives, in addition to 3 and 4, low yields of the cyclometallated complex [Ru3(CO)9{μ-η11-P(C4H3O)2(C4H2O)}2] (5). Treatment of 3 with EPh3 (E = P, As, Sb) at room temperature yields the monosubstituted derivatives [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(EPh3)] (E = P, 8; E = As, 9; E = Sb, 10). Similar reactions of 3 with P(C4H3O)3, P(OMe)3 and ButNC yield 4, [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(OMe)3}] (11) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(NCBut)] (12), respectively. The molecular structures of complexes 3, 4 and 8 have been elucidated by single crystal X-ray diffraction studies. Each complex contains a bridging σ,π-alkenyl group and while in 4 the phosphine is bound to the σ-coordinated metal atom, in 8 it is at the π-bound atom. Protonation of 3 and 4 gives the hydride complexes [(μ-H)Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}]+ (6) and [(μ-H)Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}]+ (7), respectively, while heating 3 with dimethylacetylenedicarboxylate (DMAD) in refluxing toluene gives the cyclotrimerization product, C6(CO2Me)6.  相似文献   

9.
The reaction of bis(di-t-butylphosphino) sulphur diimide, S(NPtBu2)2 (1) 1, with coordinatively unsaturated 16-electron complex fragments [M(CO)5] leads to both binuclear 1 : 2 adducts S{NPtBu2[M(CO)5]}2 (M = Cr (2B), Mo (3B) and W (4B)) and mononuclear chelate complexes S(NPtBu2)2M(CO)4 (M = Cr (2C), Mo (3C) and W (4C)). A binuclear compound S{NPtBu2[Fe(CO)4]}2 (5B) is obtained from the reaction of 1 with Fe2(CO)9. The new complexes which all contain the intact sulphyr diimide 1 are characterized on the basis of their infrared, 1H, 13C and 31P NMR spectra. An X-ray structure analysis of S(NPtBu2)2Cr(CO)4 (2C) reveals a distorted octahedral coordination sphere around the central chromium atom and an almost planar but twisted six-membered Cr(PN)2S heterocycle with angles of 91.98(2)° at chromium (P(1)CrP(2)) and 124.6(1)° at sulphur (N(1)SN(2)).  相似文献   

10.
Addition of the internal alkyne, 2-butyne, to nido-1,2-(Cp*RuH)2B3H7 (1) at ambient temperature produces nido-1,2-(Cp*Ru)2(μ-H)(μ-BH2)-4,5-Me2-4,5-C2B2H4 (2), nido-1,2-(Cp*RuH)2-4,5-Me2-4,5-C2B2H4 (3), and nido-1,2-(Cp*RuH)2-4-Et-4,5-C2B2H5 (4), in parallel paths. On heating, 2, which contains a novel exo-polyhedral borane ligand, is converted into closo-1,2-(Cp*RuH)2-4,5-Me2-4,5-C2B3H3 (5) and nido-1,6-(Cp*Ru)2-4,5-Me2-4,5-C2B2H6 (6) the latter being a framework isomer of 3. Heating 2 with 2-butyne generates nido-1,2-(Cp*RuH)2-3-{CMeCMeB(CMeCHMe)2}-4,5-Me2-4,5-C2B2H3 (7) in which the exo-polyhedral borane is triply hydroborated to generate a boron bound ---CMeCMeB(CMeCHMe)2 cluster substituent. Along with 3, 4, 5, 6, and 7, the reaction of 1 with 2-butyne at 85 °C gives closo-1,7-(Cp*Ru)2-2,3,4,5-Me4-6-(CHMeCH2Me)-2,3,4,5-C4B (8). Reaction of 1 with the terminal alkyne, phenylacetylene, at ambient temperature permits the isolation of nido-1,2-(Cp*Ru)2(μ-H)(μ-CHCH2Ph)B3H6 (9) and nido-1,2-(Cp*Ru)2(μ-H)(μ-BH2)-3-(CH2)2Ph-4-Ph-4,5-C2B2H4 (11). The former contains a Ru---B edge-bridging alkylidene fragment generated by hydrometallation on the cluster framework whereas the latter contains an exo-polyhedral borane like that of 2. Thermolysis of 11 results in loss of hydrogen and the formation of closo-1,2-(Cp*RuH)2-3-(CH2)2Ph-4-Ph-4,5-C2B3H3 (12).  相似文献   

11.
The new salt, tetra-n-butylammonium bis(benzene-1,2-dithiolato(2−)-κ2S,S′)platinate(III), [NBu4][Pt(C6H4S2)2] (1), has been synthesized in ethanol/water, and fully characterized by single crystal X-ray structure determination. The central platinum in the complex ion [Pt(bdt)2] is tetracoordinated by the S atoms of the bdt2− ligands (bdt2− is benzene-1,2-dithiolate) in a square-planar geometry. The well-resolved frozen solution EPR spectrum exhibits rhombic symmetry. The room temperature effective magnetic moment (μeff = 1.80 Bohr magneton) is in line with this spectrum and strongly supports the Pt(III) oxidation state in 1. This observation is in excellent agreement with previous results reported on closely related Ni(III), Pd(III) and Pt(III) species.  相似文献   

12.
Tricarbonyl(fulvene)chromium complexes react with anionic nucleophiles to give functionally substituted cyclopentadienyl derivatives. The nucleophilic attack occurs at the exocyclic carbon atom of the fulvene ligand. Addition of PPh2 to (η6-6,6-dimethylfulvene)Cr(CO)3 (1) yields the novel anion [(η5-C5H4C(CH3)2PPh2)Cr-(CO)3], which can be isolated as a K+, (C2H5)4N+, (C6H5)4P+, or Tl+ derivative (2–5). The potassium salt of the uncoordinated C5H4C(CH3)2PPh2 anion (7) is obtained by treatment of 6,6-dimethylfulvene with KPPh2·2C4H8O2. Similarly, NaC5H5 reacts with 1 to give Na[(η5-C5H4C(CH3)2C5H5)Cr(CO)3] (8). The reactions of (6-dimethylaminofulvene)Cr(CO)3 (15) with nucleophiles are accompanied by elimination of dimethylamine. Addition of Ph3P=CH2 to 15 gives an unstable product, but after reaction of 6-dimethylaminofulvene with Ph3P=CH2, the free ligand C5H4=CHCH=PPh3 (17) can be isolated in moderate yields. Deeply colored anions of the type [(η55-C5H4C(R)=C5H4)Cr2(CO)6] (R = H, N(CH3)2) are synthesized by reaction of 15 or (6-dimethylamino-6-methylthiofulvene)Cr(CO)3 with NaC5H5 and subsequent complexation of the mononuclear intermediate with (CH3CN)3Cr(CO)3. In addition, the synthesis of the new fulvene complexes [C5H4=CH(CH=CH)2N(CH3)Ph]M(CO)3 (23, 24; M = Cr, Mo) is described. The investigation is extended to α-ferrocenylcarbenium ions, which are isoelectronic with (fulvene)Cr(CO)3 complexes. [(η5-C5H5)Fe(C5H4CPh2)]+ BF4 (25) adds tertiary phosphines at the exocyclic carbon atom to give phosphonium salts of the type [(η5-C5H5)Fe(C5H4CPh2PR3)]+BF4. A CO-substititution product of a tricarbonyl (fulvene)chromium complex is obtained for the first time by irradiation of (η6-6,6-diphenylfulvene)Cr(CO)3 in the presence of PPh3. In addition, an improved synthesis of the (CH3CN)3M(CO)3 complexes (M = Cr, Mo, W) is reported.  相似文献   

13.
A series of 1,2-diacyl cyclopentadienyl tricarbonyl manganese and rhenium complexes, [M(CO)35-1,2-C5H3(CO-(R)2}] (3ac and 4ab), were isolated utilizing a straightforward, 3-step route. The synthetic pathway began with a 1,2-diacyl cyclopentadiene (fulvene), followed by the formation of its corresponding thallium salt and transmetallation with the appropriate pentacarbonyl metal bromide. X-ray crystallographic analysis and high-accuracy mass spectrometry confirmed the structures of the both the 4-methoxyphenyl and 4-chlorophenyl diacyl rhenium complexes, [Re(CO)35-1,2-C5H3(CO-(4-OCH3)C6H4)2}] (4a) and [Re(CO)35-1,2-C5H3(CO-(4-Cl)C6H4)2}] (4b). Diacyl complexes 3ac and 4ab were then ring-closed with hydrazine hydrate to form their corresponding pyridazine complexes, [M(CO)35-1,2-C5H3(1,4-(R)2N2C2}] (5ac and 6ab), in good yields (60–83%). The pyridazyl ligands were found to be relatively labile, and recrystallization of the target complexes 5ac and 6ab afforded only the free pyridazine ligands.  相似文献   

14.
The intramolecularly coordinated heteroleptic stannylene [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2]SnCl serves as synthon for the synthesis of the ferrocenyl-bridged bis(diorganostannylene) [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2SnC5H4]2Fe (1) which in turn reacts with W(CO)6 and Cr(CO)4(C7H8) to provide the corresponding transition metal complexes [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2Sn{W(CO)5}C5H4]2Fe (2) and [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2SnC5H4]2Fe · Cr(CO)4 (3), respectively. Reaction of compound 1 with sulphur and atmospheric moisture gave, under partial tin-carbon and oxygen-carbon bond cleavage, a tetranuclear organotin-oxothio cluster 5. All compounds were characterized by 1H, 13C, 31P, and 119Sn NMR, and IR spectroscopy, as well as by single-crystal X-ray diffraction analysis. Compounds 1 and 3 were also investigated by Mössbauer spectroscopy. Cyclovoltametric studies reveal the influence of the organostannyl moieties on the redox-behaviour of compounds 1-3 in comparison with unsubstituted ferrocene.  相似文献   

15.
The reaction of EtAlCl2 with 1,2-{LiN(PMes2)}2C6H4 (Mes = 2,4,6-Me3C6H2) and of butyloctylmagnesium with 1,2-{NH(PPh2)}2C6H4 gave [AlEt(1,2-{N(PMes2)}2C6H42N,N′)(THF)] (1) and [Mg(1,2-{N(PPh2)}2C6H42N,N′)(THF)2] (2), respectively. Complexes 1 and 2 were fully characterised by NMR (1H, 13C, 31P) and IR spectroscopy and mass spectrometry. Complexes 1 and 2 were employed as catalysts in the polymerisation of -caprolactone, which produced polymers with a narrow molecular weight distribution. For comparison the polymerisations of -caprolactone and β-butyrolactone were carried out with the Zn complex [ZnPr{1-N(PMes2)-2-N(PHMes2)C6H42N,N′}] (3) as catalyst, which produced polymers with narrow molecular weight distributions and high molecular weights.  相似文献   

16.
The reaction between 2,5-bis(trimethylsilylethynyl)thiophene and Co2(CO)8 or Co2(CO)6(X), (X = dppa, dppm), gave rise to the formation of substituted ethynylcobalt complexes containing one or two Co2(CO)6 or Co2(CO)4(X) units, 2-[Co2(CO)4(X){μ22-(SiMe3)C2}]-5-(Me3SiCC)C4H2S (X = 2CO (1), dppa (3) or dppm (4)) and 2,5-[Co2(CO)4(X){μ22-SiMe3C2}]2C4H2S (X = 2CO (2), dppa (5) or dppm (6)). Desilylation of the non-metallated and metallated alkynes in 3, 4 and 6 occurred on treatment with KOH and tetrabutylammonium fluoride to give 2-[Co2(CO)4(μ-X){μ22-SiMe3C2}]-5-(CCH)C4H2S (X = dppa (7), dppm (8)) and 2,5-[Co2(CO)4(μ-dppm){μ22-HC2}]2C4H2S (9), respectively. Crystals of 6 suitable for single-crystal X-ray diffraction were grown and the molecular structure of this compound is discussed. A comparative electrochemical study of all these complexes is presented by means of the cyclic and square-wave voltammetry techniques.  相似文献   

17.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

18.
Three nickel(II) carborane complexes, [Ni2(μ-Cl)2{7,8-(PPh2)2-7,8-C2B9H10}2] (1), [Ni{7-(OPPh2)-8-(PPh2)-7,8-C2B9H10}{7,8-(PPh2)2-7,8-C2B9H10}] (2) and [NiBr2{1,2-(PPh2)2-1,2-C2B10H10}] · CH2Cl2 (3), have been synthesized by the reactions of 1,2-bis(diphenylphosphino)-1,2-dicarba-closo-dodecaborane with NiCl2 · 6H2O or NiBr2 · 6H2O in ethanol under different conditions, respectively. For complex 1, it could also be obtained under the solvothermal condition. All the three complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and X-ray structure determination. Single crystal analysis shows that the molecular symmetry of complex 1 is centrosymmetric, containing two same structure units - Ni(7,8-(PPh2)2-7,8-C2B9H10) linked by two bridged-Cl atoms. The central square plane formed by the [Ni2Cl2] unit is almost parallel to the two side NiPP planes. For complex 2, the coordination environment of the Ni atom is a seriously distorted square-planar, in which two positions come from the chelating diphosphine ligand [7,8-(PPh2)2-7,8-C2B9H10] degraded from the closo species, while the other two are occupied by an unsymmetrical chelating phosphine oxide ligand [7-(OPPh2)-8-(PPh2)-7,8-C2B9H10]. As for complex 3, the geometry at the Ni atom is a slightly distorted square-planar. The closo carborane diphosphine ligand 1,2-(PPh2)2-1,2-C2B10H10 was coordinated bidentately to the metal ion through the two phosphorus atoms, and the two Br atoms are at cis position which can fulfill the four coordination mode of the metal.  相似文献   

19.
Oxidation of [1.1]ferrocenylruthenocenophane with a large excess and 1.5 equivalents of iodine gives dicationic iodo[1.1]ferrocenylruthenocenophanium2+I3 · 0.5I22 (1) and monocationic [1.1]ferrocenylruthenocenophanium+I3 (2) salts respectively. The structures of 1 and 2 were analyzed by single-crystal X-ray diffraction studies. The crystal form of 1 is monoclinic space group C2/c, A = 21.35](5), B = 20.594(5), C = 17.397(4) Å, β = 124.17(1)°, Z = 8, and the final R = 0.068 and Rw = 0.070. The cation formulated as [FeIII(C5H4CH2C5H4)2RuIVI]2+ exists in a syn-conformation as in the cases of the neutral compound. The distance between the RuIV and FeII is 4.656(4) Å, which is much shorter than the value of the neutral compound (4.792(2) Å), and the bond angle of I---RuIV,FeIII is 81.26°. The dihedral angle between the two η5-C5H4 (fulvenide) rings on the RuIV moiety is 37.56° due to the RuIV---I bond (2.758(3) Å). These two rings of FeIII and RuIV moieties are essentially eclipsed. The unit cell has three kinds of I3 (I3a, I3b and I3c) and one I2, and the formula of 1 is given as [FeIII(C5H4CH2CSH4)2RuIVI]2+I3 · 0.5(I3)2 · 0.5I2. The crystal of 2 formulated as [FeIII(C5H4CH2C5H4)2RuII]+I3 is triclinic space group

, and the final R = 0.067 and Rw = 0.068. The unit cell has two independent molecules (unit A and B); i.e. two kinds of distance between the RuII and FeIII, are observed; one (A) is 4.615(3) and the other (B) is 4.647(3) α. The two η5-C5H4 rings of both FeIII and RuII are essentially staggered and the dihedral angles between the rings of FcH and RcH moieties are less than 5.8°. Typical ferrocenium-type broad singlet 57Fe-Mössbauer lines are observed for both salts (1, 2) at all temperatures.  相似文献   

20.
Mono-demethylation of Cp2Ti(CH3)2 in dichloromethane with 1 M equivalent of [η5-(C5H4COOH)]Cr(CO)2NO (5), [η5-(C5H4COOH)]Cr(NO)2X] (X = Cl 6, X = I 7) and [η5-(C5H4COOH)]W(CO)3CH3 (8) gives Cp2Ti(CH3){[OC(O)C5H4]Cr(CO)2NO} (9), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2Cl} (10), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2I} (11) and Cp2Ti(CH3){[OC(O)C5H4]W(CO)3CH3} (12), respectively. The structure of 10 has been solved by X-ray diffraction studies. One of the nitrosyl groups is located at the site away from the exocyclic carbonyl carbon of the Cp(Cr) ring with twist angle of 178.1°. All the data reveals that Cp2Ti(CH3)- is a strong electron-donating group. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) in compounds 5-12, using HetCOR NMR spectroscopy, as compared with the NMR data of their ferrocene analogues. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and those of 10 are compared with the calculations via density functional B3LYP correlation- exchange method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号