首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The electronic absorption spectra, luminescence spectra and lifetimes (in MeCN at room temperature and in frozen n-C3H7CN at 77 K), and electrochemical potentials (in MeCN) of the novel dinuclear [(tpy)Ru(3)Os(tpy)]4+ and trinuclear [(tpy)Ru(3)Os(3)Ru(tpy)]6- complexes (3 = 2,5-bis(2,2':6',2'-terpyridin-4-yl)thiophene) have been obtained and are compared with those of model mononuclear complexes and homometallic [(tpy)Ru(3)Ru(tpy)]4+, [(tpy)Os(3)Os(tpy)]4+ and [(tpy)Ru(3)Ru(3)Ru(tpy)]6+ Complexes. The bridging ligand 3 is nearly planar in the complexes, as seen from a preliminary X-ray determination of [(tpy)Ru(3)Ru(tpy)][PF6]4, and confers a high degree of rigidity upon the polynuclear species. The trinuclear species are rod-shaped with a distance of about 3 nm between the terminal metal centres. For the polynuclear complexes, the spectroscopic and electrochemical data are in accord with a significant intermetal interaction. All of the complexes are luminescent (phi in the range 10(-4)-10(-2) and tau in the range 6-340 ns, at room temperature), and ruthenium- or osmium-based luminescence properties can be identified. Due to the excited state properties of the various components and to the geometric and electronic properties of the bridge, Ru --> Os directional transfer of excitation energy takes place in the complexes [(tpy)Ru(3)Os(tpy)]4+ (end-to-end) and [(tpy)Ru(3)Os(3)Ru(tpy)]6+ (periphery-to-centre). With respect to the homometallic case, for [(tpy)Ru(3)Os(3)Ru(tpy)]6+ excitation trapping at the central position is accompanied by a fivefold enhancement of luminescence intensity.  相似文献   

2.
A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)2-3,5}-2,2':6',2' '-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)2, and [Ru(TPBr)2](PF6)2, synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)2 (7) and [Ru(TPPdCl)2](PF6)2 (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)2](PF6)2 (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono- and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (1)MLCT (Ru --> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)2]2+ indicates stabilization of the luminescent 3MLCT state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)2, are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)2} chromophoric unit and the (non)metalated NCN-pincer moiety.  相似文献   

3.
A new series of V-shaped trinuclear metallorods and X-shaped pentanuclear metallostars has been prepared by the reaction of metal complexes bearing pendant phenolic functionalities with complexes containing electrophilic ligands. Specifically, {M(tpy)2} motifs (M=Ru or Os; tpy=2,2':6',2'-terpyridine) bearing one or two pendant 3,5-dihydroxyphenyl substituents at the 4-position of the central ring of the tpy have been reacted with the complexes [Ru(tpy)(Xtpy)]2+ (X=Cl or Br) to form new ether-linked species. The energy transfer from ruthenium to osmium in these complexes has been investigated in detail and the efficiency of transfer shown to be highly temperature dependent; the energy transfer is highly efficient at low temperature, whereas at room temperature nonradiative and nontransfer deactivation of the excited {Ru(tpy)2}* domains is most significant.  相似文献   

4.
Three new terpyridine-based dinuclear complexes, [(tpy)Ru(azotpy)Ru(tpy)]4+ (tpy = 2,2':6',2'-terpyridine, azotpy = bis[2,6-bis(2-pyridyl)-4-pyridyl]diazene), [(tpy)Os(azotpy)Os(tpy)]4+, and [(tpy)Ru(azotpy)Os(tpy)]4+ were prepared and their electrochemical and photophysical properties investigated. The bridging ligand, azotpy, in these complexes is reduced at less negative potentials than the unsubstituted tpy ligand. These complexes exhibit absorption bands due to the metal-to-ligand charge-transfer transitions both to the unsubstituted tpy ligand and the bridging azotpy ligand, the latter absorption being observed at the lower energy side of the former. These observations are consistent with the lower lying pi* level of the azotpy ligand than that of the tpy ligand. These complexes are nonluminescent, since the excited electron is trapped in this lower lying pi* level of the azotpy ligand in the excited state. Reduction of this bridging ligand by constant potential electrolysis renders the shape of absorption spectra for these complexes nearly identical to those of the parent complexes, [M(tpy)2]2+ (M = Ru, Os). In this reduced state, the homodinuclear Os complex becomes luminescent at room temperature, whereas the homodinuclear Ru complex becomes luminescent at 77 K, thus establishing their photoswitching behavior. The reduced heterodinuclear complex exhibits luminescence from the Os center, which is sensitized by the Ru center in the same molecule as evidenced by the excitation spectra. Thus, the intramolecular energy transfer can be switched on and off by the redox reaction of the bridging component.  相似文献   

5.
Two classes of synthetically useful bimetallic complexes of the form [(tpy)M(tpp)RuCl(3)](PF(6)) and [(tpy)M(tpp)Ru(tpp)](PF(6))(4) have been prepared and their spectroscopic and electrochemical properties investigated (tpy = 2,2':6',2"-terpyridine, tpp = 2,3,5,6-tetrakis(2-pyridyl)pyrazine, and M = Ru(II) or Os(II)). Synthetic methods have been developed for the stepwise construction of tpp-bridged systems using a building block approach. In all four complexes, the tpp that serves as the bridging ligand is the site of localization of the lowest unoccupied molecular orbital (LUMO). The nature of the HOMO (highest occupied molecular orbital) varies depending upon the components present. In the systems of the type [(tpy)M(tpp)RuCl(3)](PF(6)), the ruthenium metal coordinated to tpp and three chlorides is the easiest to oxidize and is the site of localization of the HOMO. In contrast, for the [(tpy)M(tpp)Ru(tpp)](PF(6))(4) systems, the HOMO is based on the metal, M, that is varied, either Ru or Os. This gives rise to systems which possess a lowest lying excited state that is always a metal-to-ligand charge transfer state involving tpp but can be tuned to involve Os or Ru metal centers in a variety of coordination environments. The synthetic variation of the components within this framework has allowed for understanding the spectroscopic and electrochemical properties. Bimetallic systems incorporating this tpp ligand have long-lived excited states at room temperature (lifetimes of ca. 100 ns). The bimetallic system [(tpy)Ru(tpp)Ru(tpp)](PF(6))(4) has a longer excited state lifetime than the monometallic system from which it was constructed, [(tpy)Ru(tpp)](PF(6))(2). Details of the spectroscopic and electrochemical studies are reported herein.  相似文献   

6.
A highly efficient domino reaction starting from tetrahydroquinolinone and a series of bisiminium salts provides the corresponding bis(U-terpyridines). These ligands have been treated with [(tpy)RuCl3] to afford novel dinuclear complexes [(tpy)Ru(L)Ru(tpy)]4+. The protocol is also applied for the synthesis of a star-shaped tris(U-terpyridine) and the trinuclear complex [{(tpy)Ru}3(L)]6+. In view of potential applications in the fields of metallopolymers and molecular devices, the electronic spectra, as well as the electrochemical potentials of all the complexes have been obtained. According to these data, no significant intermetal interaction has been observed for the ruthenium complexes presented here.  相似文献   

7.
Experimental and computational results for the two-step redox system [Cl5Os(NO)]n- (n = 1-3) are reported and discussed in comparison to the related one-step redox systems [Cl5Ru(NO)]n- and [Cl5Ir(NO)]n- (n = 1, 2). The osmium system exhibits remarkably low oxidation and reduction potentials. The structure of the precursor (PPh4)2[Cl5Os(NO)] is established as an {MNO}6 species with almost linear OsNO arrangement at 178.1 degrees. Density-functional theory (DFT) calculations confirm this result, and a comparison of structures calculated for several oxidation states reveals an increased labilization of the trans-positioned M-Cl bond on reduction in the order M = Ir < Os < Ru. Accordingly, the intact reduced form [Cl5Os(NO)]3- could not be observed in fluid solution even on electrolysis at -70 degrees C in n-butyronitrile solution, as confirmed both by DFT calculations and by comparison with the electron paramagnetic resonance and infrared spectroelectrochemically characterized redox pairs cis-[(bpy)2ClOs(NO)]2+/+ and [(CN)5Os(NO)]2-/3-. The DFT calculations indicate that the oxidation of [Cl5Os(NO)]2- occurs largely on the metal, the highest occupied molecular orbital (HOMO) of the precursor being composed of Os 5d (58%) and Cl(eq) 3p orbitals (41%). As for the related [(CN)5Os(NO)]2-, the reduction is largely NO centered, the lowest unoccupied molecular orbital (LUMO) of [Cl5Os(NO)]2- has 61% pi*(NO) character with significant 5d Os contributions (34%). A rather large degree of metal-NO back-donation is estimated to occur in the {OsNO}7 configuration of [Cl5Os(NO)]3- which leads to an unusual low value of 1513 cm(-1) calculated for nu(NO), signifying contributions from an Os(III)(NO-) formulation. Detailed analyses of the conformational dependence of the g anisotropy suggest that the different reduced species reported previously for [Cl5Os(NO)]3- in AgCl host lattices may be distinct in terms of eclipsed or staggered conformations of the bent NO. axial ligand relative to the Os(II)Cl4 equatorial plane. The staggered form is calculated to be more stable by 105 cm(-1). The weak absorptions of [Cl5Os(NO)]2- at 573, 495, and 437 nm are assigned as MLCT/LLCT transitions to the doubly degenerate pi*(NO) LUMO. The oxidized form [Cl5Os(NO)]- contains Os(III) in an {OsNO}5 configuration with a spin density of 0.711 on Os. In all three states of [Cl5Os(NO)]n-, the N bonded form is vastly preferred over the NO-side-on bonded alternative.  相似文献   

8.
Supramolecular bimetallic Ru(II)/Pt(II) complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) and their synthons [(tpy)Ru(L)(BL)](n)()(+) (where L = Cl(-), CH(3)CN, or PEt(2)Ph; tpy = 2,2':6',2'-terpyridine; and BL = 2,2'-bipyrimidine (bpm) or 2,3-bis(2-pyridyl)pyrazine (dpp)) have been synthesized and studied by cyclic voltammetry, electronic absorption spectroscopy, mass spectral analysis, and (31)P NMR. The mixed-metal bimetallic complexes couple phosphine-containing Ru chromophores to a reactive Pt site. These complexes show how substitution of the monodentate ligand on the [(tpy)RuCl(BL)](+) synthons can tune the properties of these light absorbers (LA) and incorporate a (31)P NMR tag by addition of the PEt(2)Ph ligand. The redox potentials for the Ru(III/II) couples occur at values greater than 1.00 V versus the Ag/AgCl reference electrode and can be tuned to more positive potentials on going from Cl(-) to CH(3)CN or PEt(2)Ph (E(1/2) = 1.01, 1.55, and 1.56 V, respectively, for BL = bpm). The BL(0/-) couple at -1.03 (bpm) and -1.05 V (dpp) for [(tpy)Ru(PEt(2)Ph)(BL)](2+) shifts dramatically to more positive potentials upon the addition of the PtCl(2) moiety to -0.34 (bpm) and -0.50 V (dpp) for the [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) bridged complex. The lowest energy electronic absorption for these complexes is assigned as the Ru(d pi) --> BL(pi*) metal-to-ligand charge transfer (MLCT) transition. These MLCT transitions are tuned to higher energy in the monometallic synthons when Cl(-) is replaced by CH(3)CN or PEt(2)Ph (516, 452, and 450 nm, for BL = bpm, respectively) and to lower energy when Pt(II)Cl(2) is coordinated to the bridging ligand (560 and 506 nm for BL = bpm or dpp). This MLCT state displays a broad emission at room temperature for all the dpp systems with the [(tpy)Ru(PEt(2)Ph)(dpp)PtCl(2)](2+) system exhibiting an emission centered at 750 nm with a lifetime of 56 ns. These supramolecular complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) represent the covalent linkage of TAG-LA-BL-RM assembly (TAG = NMR active tag, RM = Pt(II) reactive metal).  相似文献   

9.
Two ruthenium atoms are covalently connected to the para positions of a phenyl ring in 1,2,4,5-tetra(2-pyridyl)benzene (tpb) to form a linear Ru-tpb-Ru arrangement. This unique structure leads to appealing electronic properties for the biscyclometalated complex [(tpy)Ru(tpb)Ru(tpy)](2+), where tpy is 2,2';6',2″-terpyridine. It could be stepwise oxidized at substantially low potential (+0.12 and +0.55 V vs Ag/AgCl) and with a noticeably large comproportionation constant (1.94 × 10(7)). In addition to the routinely observed metal-to-ligand charge-transfer transitions, [(tpy)Ru(tpb)Ru(tpy)](2+) displays a separate and distinct absorption band at 805 nm with appreciable absorptivity (ε = 9000 M(-1) cm(-1)). This band is assigned to the charge transition from the Ru-tpb-Ru motif to the pyridine rings of tpb with the aide of density functional theory (DFT) and time-dependent DFT calculations. Complex [(tpy)Ru(tpb)Ru(tpy)](2+) was precisely titrated with 1 equiv of cerium ammonium nitrate to produce [(tpy)Ru(tpb)Ru(tpy)](3+), which shows intense multiple NIR transitions. The electronic coupling parameters H(ab) of individual NIR components are determined to be 5812, 4942, 4358, and 3560 cm(-1). DFT and TDDFT calculation were performed on [(tpy)Ru(tpb)Ru(tpy)](3+) to elucidate its electronic structure and spin density population and the nature of the observed NIR transitions. Electron paramagnetic resonance studies of [(tpy)Ru(tpb)Ru(tpy)](3+) exhibit a discernible rhombic signal with the isotropic g factor of ?g? = 2.144. These results point to the strong orbital interaction of tpb with metal centers and that tpb behaves as a redox noninnocent bridging ligand in [(tpy)Ru(tpb)Ru(tpy)](2+). Complex [(tpy)Ru(tpb)Ru(tpy)](3+) is determined to be a Robin-Day class III system with full charge delocalization across the Ru-tpb-Ru motif.  相似文献   

10.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

11.
Two novel alkynyl-bridged symmetric bis-tridentate ligands 1,2-bis(1'-[4'-(2,2':6',2'-terpyridinyl)]ferrocenyl)ethyne (; tpy-Fc-C[triple bond, length as m-dash]C-Fc-tpy; Fc = ferrocenyl; tpy = terpyridyl) and 1,4-bis(1'-[4'-(2,2':6',2'-terpyridinyl)]ferrocenyl)-1,3-butadiyne (; tpy-Fc-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-Fc-tpy) and their Ru(2+) complexes and have been synthesized and characterized by cyclic voltammetry, UV-vis and luminescence spectroscopy, and in the case of by single-crystal X-ray diffraction. Cyclic voltammograms of both compounds, and , display two severely overlapping ferrocene-based oxidative peaks with only one reductive peak. The redox behavior of and is dominated by the Ru(2+)/Ru(3+) redox couple (E(1/2) from 1.33 to 1.34 V), the Fe(2+)/Fe(3+) redox couples (E(1/2) from 0.46 to 0.80 V), and the tpy/tpy(-)/tpy(2-) redox couples (E(1/2) from -1.19 to -1.48 V). The UV-vis spectra of and show absorption bands assigned to the (1)[(d(π)(Fe))(6)] → (1)[(d(π)(Fe))(5)(π*(tpy)(Ru))(1)] MMLCT transition at ~555 nm. Complexes and are luminescent in H(2)O-CH(3)CN (4?:?1, v/v) solution at room temperature, and exhibits the strongest luminescence intensity (λ(max)(em): 710 nm, Φ(em): 2.28 × 10(-4), τ: 358 ns) relative to analogous ferrocene-based bis(terpyridine) Ru(ii) complexes reported so far.  相似文献   

12.
The new heptanuclear ruthenium(II) dendron, [Cl(2)Ru{(micro-2,3dpp)Ru[(micro-2,3-dpp)Ru(bpy)2]2}2](PF6)12 (1; 2,3-dpp=2,3-bis(2'-pyridyl)pyrazine; bpy = 2,2'-bipyridine), was prepared by means of the "complexes as ligands/complexes as metals" synthetic strategy, and its absorption spectrum, redox behavior, and luminescence properties were investigated. Compound 1 is a multicomponent species, which contains three different types of chromophores (namely, the {Cl(2)Ru(micro-2,3-dpp)2} core, the {Ru(micro-2,3dpp)3}2+ intermediate, and the {(bpy)2Ru(micro-2,3-dpp)}2+ peripheral subunits) and several redox-active sites. The new species exhibits very intense absorption bands in the UV region (epsilon value in the 10(5)-10(6) M(-1) cm(-1) range) as a result of spin-allowed ligand-centered (LC) transitions, and intense bands in the visible region (epsilon value in the 10(4)-10(5) M(-1) cm(-1) range) as a result of the various spin-allowed metal-to-ligand charge-transfer (MLCT) transitions. The redox investigation (accomplished by cyclic and differential pulse voltammetry) indicates that 1 undergoes a series of reversible metal-centered oxidation and ligand-centered reduction processes within the potential window investigated (+1.90 / -1.40 V vs. the standard calomel electrode, SCE). The assignment of each absorption bond and redox process to specific subunits of 1 was achieved by comparison with the properties of smaller multinuclear species of the same family, namely [Cl(2)Ru{(micro-2,3-dpp)Ru(bpy)2}2]4+ (2), [(bpy)2Ru(u-2,3-dpp)Ru(bpy)2]4+ (4), and [Ru{(micro-2,3-dpp)Ru(bpy)2}3]4+ (5). The title compound exhibits luminescence both at room temperature in acetonitrile fluid solution and at 77 K in butyronitrile rigid matrix. The emission is attributed to the triplet MLCT (3MLCT) state involving the core {Cl(2)Ru(micro-2,3-dpp)2} subunit. Interestingly, the 3MLCT levels involving the peripheral {(bpy)2Ru(micro-2,3-dpp)}2+ subunits are deactivated by energy transfer to the emitting level, in spite of the presence of interposed high-energy (Ru(micro-2,3-dpp)3}2+ components, which, in other dendrimers, acted as "isolating" subunits toward energy-transfer processes. Ultrafast experiments on 1 and on the parent species 2 and 5 allowed us to rationalize this behavior and highlight that a sequential two-step electron-transfer process can be held responsible for the efficient overall energy transfer, which offers a way to overcome a limitation in antenna metal dendrimers.  相似文献   

13.
In order to mimic the photosynthetic reaction centre and better understand photoinduced electron transfer processes, a family of compounds has been studied for the past 15 years. These are transition metal complexes, M(tpy)(2) where tpy is a 2,2':6',2" terpyridine based ligand, bearing on one side a donor group and on the other side an acceptor group. The resulting triad molecules or their two-component reference compounds (donor-M(tpy)(2) and M(tpy)(2-acceptor) can contain Ru, Os, Rh or Ir as the metal centre and both visible-light non absorbing groups and porphyrins as donor and acceptor groups. This tutorial review will briefly present the different systems studied and the reasons that led to the preparation of new systems with improved performances.  相似文献   

14.
Although various reactions involved in photoexcited states of polypyridyl ruthenium(II) complexes have been extensively studied, photoisomerization of the complexes is very rare. We report the first illustration of stoichiometric photoisomerization of trans-[Ru(tpy)(pynp)OH(2)](2+) (1a) [tpy = 2,2':6',2'-terpyridine; pynp = 2-(2-pyridyl)-1,8-naphthyridine] to cis-[Ru(tpy)(pynp)OH(2)](2+) (1a') and the isolation of 1a and 1a' for X-ray crystallographic analysis. Polypyridyl ruthenium(II) aquo complexes are attracting much attention related to proton-coupled electron transfer and water oxidation catalysis. We demonstrate that the photoisomerization significantly controls the redox reactions and water oxidation catalyses involving the ruthenium(II) aquo complexes 1a and 1a'.  相似文献   

15.
The tridentate ligand 3-(pyrid-2'-yl)dipyrido[3,2-a:2',3'-c]phenazine (pydppz) has been prepared in two steps by elaboration of 2-(pyrid-2'-yl)-1,10-phenanthroline. Both homoleptic [Ru(pydppz)(2)](2+) and heteroleptic [Ru(tpy)(pydppz)](2+) (tpy = 2,2';6',2' '-terpyridine) complexes have been prepared and characterized by (1)H NMR. The absorption and emission spectra are consistent with low-lying MLCT excited states, which are typical of Ru(II) complexes. Femtosecond transient absorption measurements show that that the (3)MLCT excited state of the heteroleptic complex [Ru(tpy)(pydppz)](2+) (tau approximately 5 ns) is longer-lived than that of the homoleptic complex [Ru(pydppz)(2)](2+) (tau = 2.4 ns) and that these lifetimes are significantly longer than that of the (3)MLCT state of the parent complex [Ru(tpy)(2)](2+) (tau = 120 ps). These differences are explained by the lower-energy (3)MLCT excited state present in [Ru(tpy)(pydppz)](2+) and [Ru(pydppz)(2)](2+) compared to [Ru(tpy)(2)](2+), resulting in less deactivation of the former through the ligand-field state(s). DFT and TDDFT calculations are consistent with this explanation. [Ru(tpy)(pydppz)](2+) and [Ru(pydppz)(2)](2+) bind to DNA through the intercalation of the pydppz ligand; however, only the heteroleptic complex exhibits luminescence enhancement in the presence of DNA. The difference in the photophysical behavior of the complexes is explained by the inability of [Ru(pydppz)(2)](2+) to intercalate both pydppz ligands, such that one pydppz always remains exposed to the solvent. DNA photocleavage is observed for [Ru(tpy)(pydppz)](2+) in air, but not for [Ru(pydppz)(2)](2+). The DNA damage likely proceeds through the production of small amounts of (1)O(2) by the longer-lived complex. Although both complexes possess the intercalating pydppz ligand, they exhibit different photophysical properties in the presence of DNA.  相似文献   

16.
A series of asymmetrical bis-tridentate cyclometalated complexes including [Ru(Mebib)(Mebip)](+), [Ru(Mebip)(dpb)](+), [Ru(Mebip)(Medpb)](+), and [Ru(Mebib)(tpy)](+) and two bis-tridentate noncyclometalated complexes [Ru(Mebip)(2)](2+) and [Ru(Mebip)(tpy)](2+) were prepared and characterized, where Mebib is bis(N-methylbenzimidazolyl)benzene, Mebip is bis(N-methylbenzimidazolyl)pyridine, dpb is 1,3-di-2-pyridylbenzene, Medpb is 4,6-dimethyl-1,3-di-2-pyridylbenzene, and tpy is 2,2':6',2″-terpyridine. The solid-state structure of [Ru(Mebip)(Medpb)](+) is studied by X-ray crystallographic analysis. The electrochemical and spectroscopic properties of these ruthenium complexes were studied and compared with those of known complexes [Ru(tpy)(dpb)](+) and [Ru(tpy)(2)](2+). The change of the supporting ligands and coordination environment allows progressive modulation of the metal-associated redox potentials (Ru(II/III)) from +0.26 to +1.32 V vs Ag/AgCl. The introduction of a ruthenium cyclometalated bond in these complexes results in a significant negative potential shift. The Ru(II/III) potentials of these complexes were analyzed on the basis of Lever's electrochemical parameters (E(L)). Density functional theory (DFT) and time-dependent DFT calculations were carried out to elucidate the electronic structures and spectroscopic spectra of complexes with Mebib or Mebip ligands.  相似文献   

17.
The effect of ionic diffusion on parameters of redox electrical conductivity in poly-[M(5-Cl-phen)3]2 + (M = Fe, Ru, Os) was studied.  相似文献   

18.
A series of new tridentate polypyridine ligands, made of terpyridine chelating subunits connected to various substituted 2-pyrimidinyl groups, and their homoleptic and heteroleptic Ru(II) complexes have been prepared and characterized. The new metal complexes have general formulas [(R-pm-tpy)Ru(tpy)]2+ and [Ru(tpy-pm-R)2]2+ (tpy = 2,2':6',2' '-terpyridine; R-pm-tpy = 4'-(2-pyrimidinyl)-2,2':6',2' '-terpyridine with R = H, methyl, phenyl, perfluorophenyl, chloride, and cyanide). Two of the new metal complexes have also been characterized by X-ray analysis. In all the R-pm-tpy ligands, the pyrimidinyl and terpyridyl groups are coplanar, allowing an extended delocalization of acceptor orbital of the metal-to-ligand charge-transfer (MLCT) excited state. The absorption spectra, redox behavior, and luminescence properties of the new Ru(II) complexes have been investigated. In particular, the photophysical properties of these species are significantly better compared to those of [Ru(tpy)2]2+ and well comparable with those of the best emitters of Ru(II) polypyridine family containing tridentate ligands. Reasons for the improved photophysical properties lie at the same time in an enhanced MLCT-MC (MC = metal centered) energy gap and in a reduced difference between the minima of the excited and ground states potential energy surfaces. The enhanced MLCT-MC energy gap leads to diminished efficiency of the thermally activated pathway for the radiationless process, whereas the similarity in ground and excited-state geometries causes reduced Franck Condon factors for the direct radiationless decay from the MLCT state to the ground state of the new complexes in comparison with [Ru(tpy)2]2+ and similar species.  相似文献   

19.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

20.
The known Os(IV)-cyanoimido complexes, mer-Et4N[OsIV(bpy)(Cl)3(NalphaCNbeta)] (mer-[OsIV=N-CN]-) (bpy = 2,2'-bipyridine) and trans-[OsIV(tpy)(Cl)2(NalphaCNbeta)] (trans-[OsIV=N-CN]) (2,2':6',2' '-terpyridine), have formal electronic relationships with high oxidation state Ru and Os-oxo and -dioxo complexes. These include multiple bonding to the metal, the ability to undergo multiple electron transfer, and the availability of nonbonding electron pairs for donation. Thermodynamic, oxo-like behavior is observed for mer-[OsIV=N-CN]- in the pH-dependence of its Os(VI/V) to Os(III/II) redox couples in 1:1 (v/v) CH3CN:H2O. Oxo-like behavior is also observed in the reaction between mer-[OsVI(bpy)(Cl)3(NalphaCNbeta)]PF6 and benzyl alcohol to give mer-[OsIV(bpy)(Cl)3(NalphaCNbetaH2)]PF6 and benzaldehyde. The reaction is first order in each reactant with kbenzyl(CH3CN, 25.0 +/- 0.1 degrees C) = (8.6 +/- 0.2) x 102 M-1 s-1. Formal NCN degrees transfer, analogous to O-atom transfer, occurs in reactions with tertiary phosphine and hexenes. In CH3CN under N2, a rapid reaction occurs between trans-[OsIV=N-CN] and PPh3 (kPPh3(DMF, 25.0 +/- 0.1 degrees C) = 4.06 +/- 0.02 M-1 s-1) to form the nitrilic N-bound Os(II)-(N-cyano)iminophosphorano product, trans-[OsII(tpy)(Cl)2(NalphaCNbetaPPh3)] (trans-[OsII-NalphaC-Nbeta=PPh3]). It undergoes solvolysis at 45 degrees C after 24 h to give trans-[OsII(tpy)(Cl)2(NCCH3)] and (N-cyano)iminophosphorane (NalphaC-Nbeta=PPh3). The analogue to epoxidation, N-cyanoaziridination of cyclohexene and 1-hexene by mer-[OsIV=N-CN]- and trans-[OsIV=N-CN], occurs at Nbeta to give the Os(IV)-N-cyanoaziridino complexes, mer-Et4N[OsII(bpy)(Cl)3(NalphaCNbetaC6H10)] and trans-[OsII(tpy)(Cl)2(NalphaCNbetaC6H11)], respectively. Oxidation to mer-[OsV(bpy)(Cl)3(NalphaCNbeta)]- greatly accelerates N-cyanoaziridination of cyclohexene, which is followed by slow solvolysis to give mer-[OsIII(bpy)(Cl)3(NCCH3)] and N-cyanoaziridine (NC-NC6H10). The Os-(N-cyano)aziridino complexes are the first well-characterized examples of coordinated cyanoaziridines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号