首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel Fourier transform infrared (FT-IR) microspectroscopy equipped with a micro hot stage (thermal FT-IR microscopic system) was used to quickly study the phase transformation of acetaminophen polymorphs by a one-step process. Acetaminophen was sealed in KBr disc on the first and second heating processes under this system. The results indicate that the contour IR profile of form I acetaminophen in the first heating process changed dramatically only near 165 degrees C, but in the re-heating process exhibited a considerable alteration in peak intensity, band width and position near the temperatures at 85, 118 and 153 degrees C. A glassy form of acetaminophen was obtained after rapidly cooling the melted acetaminophen from 200 to 25 degrees C. The glassy acetaminophen was recrystallized at 85 degrees C to transform to the form III of acetaminophen in the reheating process, and then transformed to its form II near 118 degrees C. The thermal FT-IR microscopic system is a simple, quick and timesaving tool for investigation of the thermo-dependent molecular structure of acetaminophen polymorphs in the processes of recrystallization and polymorphic transition.  相似文献   

2.
Three syndiotactic polypropylene samples were crystallized under different conditions in order to obtain different polymorphs. A first sample was crystallized at high temperature, obtaining the helical form I; a second was crystallized from the melt at 0°C for many days obtaining the trans-planar mesophase; a third sample was obtained by solvent induced crystallization followed by annaeling of the trans-planar mesophase, leading to a mixture of both the helical forms I and II. In the dynamic-mechanical analysis the helical form I showed only one peak of tan δ corresponding to the amorphous glass transition. The other polymorphs also showed this transition centered at about the same temperature. Beside the peak corresponding to the Tg, the trans-planar mesophase was characterized by a peak appearing at 70°C, and the helical form II by a peak at 100°C. These peaks, unambiguously associated to transitions of the different forms, can be considered a distinctive evidence for the polymorphs obtained in different processing conditions.  相似文献   

3.
It is well known that different forms of solid-state polymorphic materials exhibit diverse physicochemical properties. The variations in the wetting and surface energetics of a pair of organic polymorphic solids are reported in detail here for the first time. The growth of macroscopic single crystals (facet area >1 cm(2)) of paracetamol has enabled for the first time the direct measurement of advancing contact angles, theta(A) for water and diiodomethane on a range of specific facets for two polymorphs; forms I and II. Not only was the wetting behavior found to be anisotropic, as has been recently reported, but the differing polymorphic forms exhibited significant variations in their wetting behavior for the same Miller indexed faces. The (001), (010), and (110) faces were studied, and the observed wettability data differed confirming the independence of facet wettability and Miller indices for both polymorphs. theta(A) was found to be very sensitive to the local surface chemistry for each facet examined, which in turn is a direct consequence of the molecular packing and structure within the crystal lattice. On the basis of the theta(A) value of water, the hydrophilicity rankings for the facet surfaces of form II examined is: (010) approximately (110) > (001). This experimental study highlights complex surface chemistry of polymorphic solids in which anisotropic surface energies were observed for both forms of paracetamol, strongly suggesting that such anisotropic wetting behavior is the norm for organic crystalline solids. Furthermore, the same Miller indexed facets for forms I and II exhibited very different surface chemical behavior, such that it was not possible to infer understanding about one form based upon knowledge of another form.  相似文献   

4.
It is very difficult to follow rapid changes in polymorphic transformation and crystallization and to estimate the species recrystallized from the amorphous form. The aim of this study was to clarify the structural changes of amorphous terfenadine and to evaluate the polymorphs crystallized from amorphous samples using XRD-DSC and an atomic force microscope with a thermal probe (micro-TA). Amorphous samples were prepared by grinding or rapid cooling of the melt. The rapid structural transitions of samples were followed by the XRD-DSC system. On the DSC trace of the quenched terfenadine, two exotherms were observed, while only one exothermic peak was observed in the DSC scan of a ground sample. From the in situ data obtained by the XRD-DSC system, the stable form of terfenadine was recrystallized during heating of the ground amorphous sample, whereas the metastable form was recrystallized from the quenched amorphous sample and the crystallized polymorph changed to the stable form. Obtained data suggested that recrystallized species could be related to the homogeneity of samples. When the stored sample surface was scanned by atomic force microscopy (AFM), heterogeneous crystallization was observed. By using micro-TA, melting temperatures at various points were measured, and polymorph forms I and II were crystallized in each region. The percentages of the crystallized form I stored at 120 and 135 °C were 47 and 79%, respectively. This result suggested that increasing the storage temperature increased the crystallization of form I, the stable form, confirming the temperature dependency of the crystallized form. The crystallization behavior of amorphous drug was affected by the annealing temperature. Micro-TA would be useful for detecting the inhomogeneities in polymorphs crystallized from amorphous drug.  相似文献   

5.
Rifampicin–Isoniazid mixture is a frequently used product in the treatment of tuberculosis. Rifampicin exhibits polymorphism and exists in two polymorphic forms: the stable form I and the metastable form II. The aim of this work was to evaluate the thermal behavior of the binary mixtures of polymorphs I and II of rifampicin and isoniazid by using DSC. Mixtures of different forms (rifampicin form I and II) showed interaction with isoniazid indicating that the mixtures are less stable compared to the drug alone. Interaction was observed in case of both polymorphs of rifampicin.  相似文献   

6.
Acyclovir (ACV) has two polymorphs, anhydrate 1 and anhydrate 2, and two hydrates, 2/3 hydrate and dihydrate. The effect of polymorphic transformation of ACV on the temperature and humidity was evaluated by simultaneous XRD-DSC and vapor sorption analysis. Each crystal structure of ACV was analyzed by single crystal analysis and powder X-ray diffraction analysis. On the polymorphic and pseudomorphic transformation, anhydrate 1 did not directly transform to anhydrate 2, but transform through 2/3 hydrate and dihydrate due to relative humidity and temperature. According to the molecular packing for four crystals, there are two packing manners for purine moiety. Anhydrate 1, anhydrate 2, 2/3 hydrate and dihydrate were packed in parallel, anti parallel, mixture of parallel–anti parallel and parallel manners, respectively. Base on the packing manner of ACV, it can be seen why the phase transformation occurs with readily or with difficulty. The thermodynamic relation of anhydrate form 1 and form 2 was evaluated by DSC and microcalorimetry. It was found that these two forms are monotropic forms, with anhydrate form I is stable form and it transform to a new form 3 at 443.2 K.  相似文献   

7.
This study is aimed at exploring the utility of thermoanalytical methods in the characterization of various polymorphs and solvates of nevirapine. The different forms obtained by recrystallization of nevirapine from various solvents showed morphological differences in SEM. The presence of polymorphic forms is suggested by single sharp melting endotherm different from original sample in DSC and no mass loss in TG, while appearance of desolvation peak in TG indicated the formation of solvates. The higher desolvation temperatures of all the solvates than their respective boiling point indicate tighter binding of solvent. The changes in the crystal lattice were demonstrated by X-ray powder diffraction studies. The enthalpy of fusion rule indicated the existence of monotropy in polymorphic pairs I/O and II/O, while I/II is enantiotropically related. The enthalpy of solution, an indirect measure of the lattice energy of a solid, was well correlated with the crystallinity of all the solid forms obtained. The magnitude of ΔH sol was found to be ?14.26  kJ mol?1 for Form V and ?8.29  kJ mol?1 for Form O, exhibiting maximum ease of molecular release from the lattice in Form V. The transition temperature was found to be higher than the melting of both the forms except for polymorphic pair I/II providing complementary evidence for the existence of monotropy as well as enantiotropy in these polymorphic pairs.  相似文献   

8.
Two polymorphic forms of a novel pharmaceutical compound, ciprofloxacin-saccharinate (CIP-SAC), are analyzed using one dimensional (1D) and two dimensional (2D) (1)H nuclear magnetic resonance (NMR) at fast magic angle spinning (MAS). Additionally (15)N spectroscopy and (1)H-(13)C correlation experiments were performed to complement our conclusions. The 1D (1)H NMR spectra of CIP and complexes reveal valuable information about the ionic bonding between ciprofloxacin and saccharine. Additionally, these spectra allow us to perform a clear characterization of each solid form, giving the number of molecules per unit cell in one of the polymorphs. From 2D (1)H-(1)H spectra obtained through double quantum correlations we can arrive at important conclusions about the hydrogen bonding, conformation, and intra and inter-molecular interactions present in these compounds. Comparing and contrasting the (1)H-(1)H correlation data obtained for both polymorphic forms and taking into account the single crystal structure data existing for the solid form CIP-SAC (II) was possible to extract some conclusions on the polymorph CIP-SAC (I) where no single crystal information is available. (1)H MAS NMR is shown to be an important tool in the field of polymorphism and for the characterization of multicomponent pharmaceutical compounds.  相似文献   

9.
Azelnidipine, a new dihydropyridine calcium ion antagonist, was protected by patent in Japan. In present study, identifications of the crystal phases, including two polymorphic and a pseudopolymorphic crystal forms of azelnidipine, were attempted using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), IR-, Raman-, THz-, and ss-NMR-spectroscopy. PXRD identified three different crystal forms, while, spectroscopy analysis provided the information of crystal structure involving intermolecular interactions. The transition thermodynamics of the azelnidipine polymorphs were extensively investigated by solubility method. The solubility of the two polymorphs of α and β in 50% ethanol at 25, 31, 37, 42, and 49°C was investigated; the values obtained were used to calculate the thermodynamic parameters of the transition reaction. The temperature of polymorphic phase transition in 50% ethanol was 50.78°C, and the values of ΔGα,βθ, ΔHα,βθ, and ΔSα,βθ at 25°C were -1.18?kJ·mol-1, -14.81?kJ·mol-1, and -45.73?J·mol-1·K-1, respectively. Form β was proved to be thermodynamic stable form at room temperature and enantiotropically related with form α. The kinetics of the solid-state decomposition, studied using DSC analysis, showed that the activation energies of decomposition of the polymorphs α and β at high temperatures were 148.67 and 151.93?kJ·mol-1.  相似文献   

10.
In this work, 3,5-bis(decyloxy)benzaldehyde, a precursor of long chain amphiphilic BODIPYs, was synthesized and its polymorphic behavior was characterized by differential scanning calorimetry, polarized light thermo microscopy, infrared spectroscopy, and XRPD. From the combined use of these techniques, an interesting polymorphic behavior was observed, and four polymorphs were identified. The initial compound melts around room temperature, ca. 30 °C, and several polymorphic forms of lower melting point are obtained by cooling the melt. A thermal program could be developed that allows obtaining each form independently.  相似文献   

11.
We employ periodic density functional theory calculations to compare the structural chemistry of silicon chalcogenides (silica, silicon sulfide) and anhydrous tetrahedral halides (beryllium fluoride, beryllium chloride). Despite the different formal oxidation states of the elements involved, the divalent halides are known experimentally to form crystal structures similar to known SiX2 frameworks; the rich polymorphic chemistry of SiO2 is however not matched by divalent halides, for which a very limited number of polymorphs are currently known. The calculated energy landscapes yield a quantitative match between the relative polymorphic stability in the SiO2/BeF2 pair, and a semiquantitative match for the SiS2/BeCl2 pair. The experimentally observed polymorphs are found to lie lowest in energy for each composition studied. For the two BeX2 compounds studied, polymorphs not yet synthesized are predicted to lie very low in energy, either slightly above or even in between the energy of the experimentally observed polymorphs. The experimental lack of polymorphism for tetrahedral halide materials thus does not appear to stem from a lack of low-energy polymorphs but more likely is the result of a lack of experimental exploration. Our calculations further indicate that the rich polymorphic chemistry of SiO2 can be potentially matched, if not extended, by BeF2, provided that milder synthetic conditions similar to those employed in zeolite synthesis are developed for BeF2. Finally, our work demonstrates that both classes of materials show the same behavior upon replacement of the 2p anion with the heavier 3p anion from the same group; the thermodynamic preference shifts from structures with large rings to structures with larger fractions of small two and three membered rings.  相似文献   

12.
Polymorphism exhibits different physicochemical properties, which can impact the bioavailability and bioactivity of solid drugs. This study focused on identifying the polymorphs of ginsenoside compound K (CK) and studying their different behaviors in pharmacokinetics (PK) and pharmacodynamics (PD). Four CK polymorphs (form I, II, III, and IV) from organic solvents were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD). A feasible LC-MS/MS method was exploited to determine the PK parameters. Form II displayed the most exposure, followed by form I, III, and IV. Notably, all forms showed sex dimorphism, and the bioavailability in the female group was about two-fold higher than in the male group. The PD properties were investigated in carrageenan-induced acute paw inflammation, and form II at 20 mg/kg showed significant inhibition of edema by 42.7%. This study clarified the polymorphic, PK, and PD characters of four crystal forms of CK, and the data suggested that form II had the best efficacy for drug development.  相似文献   

13.
Solid-state linear-dichroic infrared (IR-LD) spectroscopy, using an orientation technique as a suspension in nematic liquid crystal, has been carried out of Aspirin polymorphs (forms I and II). Reducing-difference procedure for polarized IR-spectra interpretation has been applied for structural analysis of both modifications and the data have been compared with known crystallographic ones. A vibration assignment of forms I and II has been included and on this basis, a quantitative determination by FT-IR spectra for form I in mixtures with second one has been presented, using intensity ratio of 1606 cm−1 peak (characteristic for both forms) to 599 cm−1 one (attributed to form I). The obtained reliability is 99.78%.  相似文献   

14.
The trans isomer of (Z)-2-[p-(1,2-diphenyl-butenyl)phenoxy]-N,N-dimethyletylamine (tamoxifen) is well known for its endocrine activity as an antiestrogenic agent. Its citrate salt, a widely used pharmaceutical agent, appears in three main polymorphic forms, two of which are well known (I and II) and another form not yet well evidenced.

A vibrational study has been conducted for identifying the two known polymorphic forms of tamoxifen citrate (I and II) and for characterising the other form (form III) examined in this study.

Other techniques for the characterization of the different polymorphs, such as XRDP, have been used.  相似文献   


15.
Seven polymorphic modifications of doxazosin mesylate, designed as forms A, D, E, F, G, H, I, and the amorphous state were studied by thermal methods (TG and DSC), temperature resolved X-ray powder diffractometry, hot stage and scanning electron microscopy and by FT-IR spectroscopy. Amorphous form was obtained either by fast evaporation of the solvent or by fast cooling of the melt in the DSC. Polymorphs A and F were found to be stable in the temperature range from room temperature to their melting points at 277.9 and 276.5°C, respectively. Form G, which melts at 270.8°C, was found to be hygroscopic. Polymorph D undergoes irreversible solid–liquid–solid phase transition at 235.5°C to polymorph I which melts at 274.9°C. Form H, which melts at 258.0°C, was found to be unstable at high temperatures. DSC examinations revealed that form H is irreversibly transformed to polymorph F during heating above the temperature of about 240°C. The amorphous state was found to be stable at room temperature but when heating above the glass transition (T g=144.1°C) it crystallizes at 221.6°C, what leads into a mixture of polymorphic forms. The new polymorphic form designed as E was identified in the mixture. The polymorph E is converted by heating to the more stable form F. The solubilities at 25°C for forms A, and F in methanol are 3.5 and 7.7 mg mL−1and in water they are 3.8 and 6.2 mg mL−1, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The thermal properties of two polymorphs of the drug carbamazepine, Forms I and III, were studied using high-speed differential scanning calorimetry (DSC). Previously, accurate determination of the heat enthalpy of fusion of Form III has not been possible using DSC at typical heating rates, due to concurrent exothermic recrystallisation to the higher-melting Form I. Here, it is demonstrated that heating rates of 250° C/min altered the kinetics of the melting transition of Form III such that this concurrent exothermic recrystallisation was inhibited. This allowed direct measurement of the enthalpy of the melting endotherm for Form III from a single transition. The enthalpy of this transition was found to be 109.5 J/g. Further investigations were then performed to test the utility of this technique in quantifying relative amounts of Forms I and III in mixtures of the two polymorphs. It was demonstrated that a limit of detection of 1% (w/w) was possible in this system. However, accurate quantification was not possible due to seeding effects initiating recrystallisation to Form I in these mixtures, even at these elevated heating rates. The utility of this novel technique as a fast analytical tool for studying the polymorphic behaviour of metastable polymorphs has been successfully demonstrated.  相似文献   

17.
Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting β-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488–1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.  相似文献   

18.
A family of two-dimensional coordination polymers formed from the reaction of Cd(NO(3))(2) with pyrazine or pyrimidine is reported, including rare examples of polymorphic coordination polymers which crystallise as multiple crystals. Six coordination polymers have been structurally characterised, four for pyrazine and two for pyrimidine-based systems, all of which form two-dimensional arrays utilising pyrazine/pyrimidine bridging, in some instances in combination with nitrate bridging. The compounds form either 4(4) grids (1,3,4,5), or in one instance, a 6(3) herringbone sheet structure (2). In the case of 3, two polymorphs have been identified, 3a and 3b, in which the three-dimensional arrangements of the coordination polymers differ only in the relative ordering of adjacent two-dimensional sheets. It was found that these two polymorphs crystallise in a simultaneous fashion such that each crystal studied was found to contain regions of both polymorphs and was believed to be a multiple crystal. Assessment of the phase purity of the product from the reaction of Cd(NO(3))(2) with either pyrazine or pyrimidine indicates that compounds 1and 5 are not formed when the products are formed by rapid precipitation but only when using slow-diffusion methods. It is also apparent that in almost all instances more than one product is formed from a given reaction thereby illustrating the complexity of coordination polymer formation even when using simple building-blocks. For the crystal engineer this complexity is perhaps best illustrated by the simultaneous formation of 3a and 3b where no chemical interactions differentiate the two polymorphs, presenting a seemingly insurmountable complexity in the engineering of these systems.  相似文献   

19.
采用强流脉冲离子束(High-intensitypulsedionbeam,HIPIB)烧蚀技术在Si(100)基体上沉积类金刚石(Diamond-likecarbon,DLC)薄膜,衬底温度的变化范围为298~673K.利用Raman光谱和X射线光电子谱(XPS)对DLC薄膜的化学结合状态与衬底温度之间关系进行研究.薄膜XPS的C1s谱的解谱分析得出薄膜中含有sp3C(结合能为285.5eV)和sp2C(结合能为284.7eV)成分,根据解谱结果评价薄膜中sp3C含量.根据XPS分析可知,衬底温度低于473K时,sp3C的含量大约为40%左右;随着沉积薄膜时衬底温度的提高,sp3C的含量降低,由298K时的42.5%降到673K时的8.1%,从573K开始发生sp3C向sp2C转变.Raman光谱表明,随着衬底温度的提高,Raman谱中G峰的峰位靠近石墨峰位,G峰的半峰宽降低,D峰与G峰的强度比ID/IG增大,说明薄膜中的sp3C的含量随衬底温度增加而减少.  相似文献   

20.
The role of the cellulose ultrastructure on the relationship between cellulase binding and activity is not clear yet. In this article, a quartz crystal microbalance with dissipation (QCM-D) was employed to monitor the interactions between a given cellulase and the cellulose substrates with varied polymorphs of pure cellulose I and II and the intermediate state (I/II). Initially, cellulose nanocrystals (CNCs) with polymorphs of cellulose I, I/II and II were prepared and spin-coated on QCM sensors. The cellulose substrates’ crystallinity degree was examined by XRD, and morphology was detected by AFM. Then, a commercial cellulase from Trichoderma reesei was used to test the adsorption and hydrolysis of cellulose substrates with polymorphs of I, I/II and II, respectively. The results revealed that in the enzyme adsorption and desorption process at a temperature of 15 °C, CNC-II had the lowest adsorption capacity with a total adsorption mass of 179 ng cm?2 but the highest reversible binding ratio of 33.7%; for comparison, the values were 235 ng cm?2 versus 25.6% and 207 ng cm?2 versus 26.9% for CNC-I and -I/II, respectively. And the conformation of adlayers on CNC-I, -I/II and -II derived from the QCM data became softer and softer in turn. On the other hand, CNC-II exhibited the best enzymatic hydrolytic ability among three substrates when enzymatic hydrolysis experiments were conducted at 45 °C. The results indicated that polymorphic conversion from I to II changes the affinity between the enzyme and cellulose surface; CNC-II has the lowest affinity to the enzyme, but the softer conformation of the adsorbed enzyme layer, and the more reversible adsorption may facilitate its hydrolytic activity. This article gives a perspective from the adsorption dynamics and conformation of the adsorbed enzyme layer, helping to understand the superior hydrolytic activity of cellulose with polymorph II. Thus, there is a potential of polymorphic conversion in the reduction of enzyme dosage and cost in the enzymatic hydrolysis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号